Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 801-813, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38555748

RESUMO

The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion. The additional hydrophilic block of the polymer should stabilize the particles in solution and enable them to encapsulate a negatively charged drug in the presence of PE excess. We demonstrated that diblock copolymers, poly(ethylene oxide)-block-poly(N,N-dimethylaminoethyl methacrylate) and poly(ethylene oxide)-block-poly(N,N,N-trimethylammonioethyl methacrylate), consisting of a polycation block and a neutral hydrophilic block, reversibly co-assemble with insulin in pH range between 5 and 8. Using small-angle neutron and X-ray scattering (SANS, SAXS), we showed that insulin arrangement within formed particles is controlled by intermolecular electrostatic forces between protein molecules, and can be tuned by varying ionic strength. For the first time, we observed by fluorescence that formed protein/PE complexes with excess of positive charges exhibited potential for encapsulating and controlled release of negatively charged bivalent drugs, protoporphyrin-IX and zinc(II) protoporphyrin-IX, enabling the development of nanocarriers for combination therapies with adjustable charge, stability, internal structure, and size.


Assuntos
Insulina , Protoporfirinas , Polieletrólitos , Óxido de Etileno , Espalhamento a Baixo Ângulo , Difração de Raios X , Polímeros/química , Proteínas , Ponto Isoelétrico
2.
J Colloid Interface Sci ; 659: 926-935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219311

RESUMO

Achieving a controlled preparation of nanoparticle superstructures with spatially periodic arrangement, also called superlattices, is one of the most intriguing and open questions in soft matter science. The interest in such regular superlattices originates from the potentialities in tailoring the physicochemical properties of the individual constituent nanoparticles, eventually leading to emerging behaviors and/or functionalities that are not exhibited by the initial building blocks. Despite progress, it is currently difficult to obtain such ordered structures; the influence of parameters, such as size, softness, interaction potentials, and entropy, are neither fully understood yet and not sufficiently studied for 3D systems. In this work, we describe the synthesis and characterization of spatially ordered hierarchical structures of coated cerium oxide nanoparticles in water suspension prepared by a bottom-up approach. Covering the CeO2 surface with amphiphilic molecules having chains of appropriate length makes it possible to form ordered structures in which the particles occupy well-defined positions. In the present case superlattice arrangement is accompanied by an improvement in photoluminescence (PL) efficiency, as an increase in PL intensity of the superlattice structure of up to 400 % compared with that of randomly dispersed nanoparticles was observed. To the best of our knowledge, this is one of the first works in the literature in which the coexistence of 3D structures in solution, such as face-centered cubic (FCC) and Frank-Kasper (FK) phases, of semiconductor nanoparticles have been related to their optical properties.

3.
Foods ; 12(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238839

RESUMO

Dairy products and plant-based alternatives have a large range of structural features from atomic to macroscopic length scales. Scattering techniques with neutrons and X-rays provide a unique view into this fascinating world of interfaces and networks provided by, e.g., proteins and lipids. Combining these scattering techniques with a microscopic view into the emulsion and gel systems with environmental scanning electron microscopy (ESEM) assists in a thorough understanding of such systems. Different dairy products, such as milk, or plant-based alternatives, such as milk-imitating drinks, and their derived or even fermented products, including cheese and yogurt, are characterized in terms of their structure on nanometer- to micrometer-length scales. For dairy products, the identified structural features are milk fat globules, casein micelles, CCP nanoclusters, and milk fat crystals. With increasing dry matter content in dairy products, milk fat crystals are identified, whereas casein micelles are non-detectable due to the protein gel network in all types of cheese. For the more inhomogeneous plant-based alternatives, fat crystals, starch structures, and potentially protein structures are identified. These results may function as a base for improving the understanding of dairy products and plant-based alternatives, and may lead to enhanced plant-based alternatives in terms of structure and, thus, sensory aspects such as mouthfeel and texture.

4.
Langmuir ; 38(7): 2227-2237, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35113578

RESUMO

Some studies have speculated that the concentration of bromide ions plays a crucial role in the surfactant density surrounding gold nanorods (AuNR). Small-angle X-ray and neutron scattering (SAXS and SANS) experiments were conducted to analyze any influence the bromide ions might have on the stabilization layer and the aggregation behavior of the ligand CTAB molecules in general. The AuNR were immersed in solutions containing a fixed CTA+ concentration of 2 mM and varying bromide ion concentrations from 0 to 22 mM. A patchy AuNR stabilization shell at low bromide ion concentrations was found, contrary to previously published SANS studies on the AuNR stabilization shell. However, with increasing bromide ion concentration, the density of the stabilization shell increases asymptotically toward a closed/collapsed bilayer configuration. AuNR grown under similar conditions show higher anisotropy with larger bromide ion concentrations. Both results indicate that anisotropic growth strongly depends on a sufficiently dense stabilization layer established by high bromide ion concentrations.

5.
J Colloid Interface Sci ; 611: 129-136, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34933191

RESUMO

Sulfavant A and Sulfavant R, sulfoquinovoside-glycerol lipids under study as vaccine adjuvants, structurally differ only for the configuration of glyceridic carbon, R/S and R respectively. The in vitro activity of these substances follows a bell-shaped dose-response curve, but Sulfavant A gave the best response around 20 µM, while Sulfavant R at 10 nM. Characterization of aqueous self-assembly of these molecules by a multi-technique approach clarified the divergent and controversial biological outcome. Supramolecular structures were present at concentrations much lower than critical aggregation concentration for both products. The kind and size of these aggregates varied as a function of the concentration differently for Sulfavant A and Sulfavant R. At nanomolar range, Sulfavant A formed cohesive vesicles, while Sulfavant R arranged in spherical micellar particles whose reduced stability was probably responsible for an increase of monomer concentration in accordance with immunomodulatory profile. Instead, at micromolar concentrations transition from micellar to vesicular state of Sulfavant R occurred and thermodynamic stability of the aggregates, assessed by surface tensiometry, correlated with the bioactivity of Sulfavant A at 20 µM and the complete loss of efficacy of Sulfavant R. The study of Sulfavants provides clear evidence of how self-aggregation, often neglected, and the equilibria between monomers and aqueous supramolecular forms of lipophilic molecules deeply determine the overall bio-response.


Assuntos
Adjuvantes de Vacinas , Água , Adjuvantes Imunológicos , Micelas , Termodinâmica
7.
Langmuir ; 37(45): 13235-13243, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34735164

RESUMO

Using CO2 as a resource in the production of materials is a viable alternative to conventional, petroleum-based raw materials and therefore offers great potential for more sustainable chemistry. This study presents a detailed structural characterization of aggregates of nonionic dodecyl surfactants with different amounts of CO2 substituting ethylene oxide (EO) in the head group. The micellar structure was characterized as a function of concentration and temperature by dynamic and static light scattering and, in further detail, by small-angle neutron scattering (SANS). The influence of the CO2 unit in the hydrophilic EO group is systematically compared to the incorporation of propylene oxide (PO) and propiolactone (PL). The surfactants with carbonate groups in their head groups form ellipsoidal micelles in an aqueous solution similar to conventional nonionic surfactants, becoming bigger with increasing CO2 content. In contrast, the incorporation of PO units hardly alters the behavior, while the incorporation of a PL unit has an effect comparable to the CO2 unit. The analysis of the SANS data shows decreasing hydration with increasing CO2 and PL content. By increasing the temperature, a typical sphere-rod transition is observed, where CO2 surfactants show a much higher elongation with increasing temperature, which is correlated with the reduced cloud point and a lower extent of head group hydration. Our findings demonstrate that CO2-containing surface-active compounds are an interesting, potentially "greener" alternative to conventional nonionic surfactants.

8.
Biophys J ; 120(23): 5408-5420, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34717964

RESUMO

ß-casein undergoes a reversible endothermic self-association, forming protein micelles of limited size. In its functional state, a single ß-casein monomer is unfolded, which creates a high structural flexibility, which is supposed to play a major role in preventing the precipitation of calcium phosphate particles. We characterize the structural flexibility in terms of nanosecond molecular motions, depending on the temperature by quasielastic neutron scattering. Our major questions are: Does the self-association reduce the chain flexibility? How does the dynamic spectrum of disordered caseins differ from a compactly globular protein? How does the dynamic spectrum of ß-casein in solution differ from that of a protein in hydrated powder states? We report on two relaxation processes on a nanosecond and a sub-nanosecond timescale for ß-casein in solution. Both processes are analyzed by Brownian oscillator model, by which the spring constant can be defined in the isotropic parabolic potential. The slower process, which is analyzed by neutron spin echo, seems a characteristic feature of the unfolded structure. It requires bulk solvent and is not seen in hydrated protein powders. The faster process, which is analyzed by neutron backscattering, has a smaller amplitude and requires hydration water, which is also observed with folded proteins in the hydrated state. The self-association had no significant influence on internal relaxation, and thus, a ß-casein protein monomer flexibility is preserved in the micelle. We derive spring constants of the faster and slower motions of ß-caseins in solution and compared them with those of some proteins in various states (folded or hydrated powder).


Assuntos
Caseínas , Micelas , Nêutrons , Análise Espectral , Água
9.
Biomacromolecules ; 22(4): 1445-1457, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33729771

RESUMO

Extracellular polysaccharides are widely produced by bacteria, yeasts, and algae. These polymers are involved in several biological functions, such as bacteria adhesion to surface and biofilm formation, ion sequestering, protection from desiccation, and cryoprotection. The chemical characterization of these polymers is the starting point for obtaining relationships between their structures and their various functions. While this fundamental correlation is well reported and studied for the proteins, for the polysaccharides, this relationship is less intuitive. In this paper, we elucidate the chemical structure and conformational studies of a mannan exopolysaccharide from the permafrost isolated bacterium Psychrobacter arcticus strain 273-4. The mannan from the cold-adapted bacterium was compared with its dephosphorylated derivative and the commercial product from Saccharomyces cerevisiae. Starting from the chemical structure, we explored a new approach to deepen the study of the structure/activity relationship. A pool of physicochemical techniques, ranging from small-angle neutron scattering (SANS) and dynamic and static light scattering (DLS and SLS, respectively) to circular dichroism (CD) and cryo-transmission electron microscopy (cryo-TEM), have been used. Finally, the ice recrystallization inhibition activity of the polysaccharides was explored. The experimental evidence suggests that the mannan exopolysaccharide from P. arcticus bacterium has an efficient interaction with the water molecules, and it is structurally characterized by rigid-rod regions assuming a 14-helix-type conformation.


Assuntos
Mananas , Psychrobacter , Aderência Bacteriana , Polissacarídeos
10.
Chemistry ; 27(23): 6904-6910, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33560564

RESUMO

Monodisperse unilamellar nanotubes (NTs) and nanoribbons (NRs) were transformed to multilamellar NRs and NTs in a well-defined fashion. This was done by using a step-wise approach in which self-assembled cationic amino acid amphiphile (AAA) formed the initial NTs or NRs, and added polyanion produced an intermediate coating. Successive addition of cationic AAA formed a covering AAA layer, and by repeating this layer-by-layer (LBL) procedure, multi-walled nanotubes (mwNTs) and nanoribbons were formed. This process was structurally investigated by combining small-angle neutron scattering (SANS) and cryogenic-transmission electron microscopy (cryo-TEM), confirming the multilamellar structure and the precise layer spacing. In this way the controlled formation of multi-walled suprastructures was demonstrated in a simple and reproducible fashion, which allowed to control the charge on the surface of these 1D aggregates. This pathway to 1D colloidal materials is interesting for applications in life science and creating well-defined building blocks in nanotechnology.


Assuntos
Nanotubos de Carbono , Aminoácidos , Microscopia Eletrônica de Transmissão , Nanotecnologia , Espalhamento a Baixo Ângulo
11.
J Phys Condens Matter ; 33(14)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33494081

RESUMO

We investigate the structure of gluten polymer-like gels in a binary mixture of water/ethanol, 50/50 v/v, a good solvent for gluten proteins. Gluten comprises two main families of proteins, monomeric gliadins and polymer glutenins. In the semi-dilute regime, scattering experiments highlight two classes of behavior, akin to standard polymer solution and polymer gel, depending on the protein composition. We demonstrate that these two classes are encoded in the structural features of the proteins in very dilute solution, and are correlated with the presence of proteins assemblies of typical size tens of nanometers. The assemblies only exist when the protein mixture is sufficiently enriched in glutenins. They are found directly associated to the presence in the gel of domains enriched in non-exchangeable H-bonds and of size comparable to that of the protein assemblies. The domains are probed in neutron scattering experiments thanks to their unique contrast. We show that the sample visco-elasticity is also directly correlated to the quantity of domains enriched in H-bonds, showing the key role of H-bonds in ruling the visco-elasticity of polymer gluten gels.


Assuntos
Glutens , Polímeros , Géis/química , Gliadina/química , Glutens/química , Polímeros/química , Proteínas , Viscosidade
12.
Soft Matter ; 16(46): 10425-10438, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33165495

RESUMO

Polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA) is found in very high concentrations in a few peculiar tissues, suggesting that it must have a specialized role. DHA was proposed to affect the function of the cell membrane and related proteins through an indirect mechanism of action, based on the DHA-phospholipid effects on the lipid bilayer structure. In this respect, most studies have focused on its influence on lipid-rafts, somehow neglecting the analysis of effects on liquid disordered phases that constitute most of the cell membranes, by reporting in these cases only a general fluidifying effect. In this study, by combining neutron reflectivity, cryo-transmission electron microscopy, small angle neutron scattering, dynamic light scattering and electron paramagnetic resonance spectroscopy, we characterize liquid disordered bilayers formed by the naturally abundant 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and different contents of a di-DHA glycero-phosphocholine, 22:6-22:6PC, from both a molecular/microscopic and supramolecular/mesoscopic viewpoint. We show that, below a threshold concentration of about 40% molar percent, incorporation of 22:6-22:6PC in the membrane increases the lipid dynamics slightly but sufficiently to promote the membrane deformation and increase of multilamellarity. Notably, beyond this threshold, 22:6-22:6PC disfavours the formation of lamellar phases, leading to a phase separation consisting mostly of small spherical particles that coexist with a minority portion of a lipid blob with water-filled cavities. Concurrently, from a molecular viewpoint, the polyunsaturated acyl chains tend to fold and expose the termini to the aqueous medium. We propose that this peculiar tendency is a key feature of the DHA-phospholipids making them able to modulate the local morphology of biomembranes.


Assuntos
Ácidos Graxos Ômega-3 , Bicamadas Lipídicas , Ácidos Docosa-Hexaenoicos , Microdomínios da Membrana , Fosfatidilcolinas , Fosfolipídeos
13.
Sci Rep ; 10(1): 16691, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028889

RESUMO

Myelin basic protein (MBP) and its interaction with lipids of the myelin sheath plays an important part in the pathology of multiple sclerosis (MS). Previous studies observed that changes in the myelin lipid composition lead to instabilities and enhanced local curvature of MBP-lipid multilayer structures. We investigated the molecular origin of the instability and found that the diseased lipid membrane has a 25% lower bending rigidity, thus destabilizing smooth [Formula: see text]µm curvature radius structures such as in giant unilamellar vesicles. MBP-mediated assembling of lipid bilayers proceeds in two steps, with a slow second step occurring over many days where native lipid membranes assemble into well-defined multilayer structures, whereas diseased lipid membranes form folded assemblies with high local curvature. For both native and diseased lipid mixtures we find that MBP forms dense liquid phases on top of the lipid membranes mediating attractive membrane interactions. Furthermore, we observe MBP to insert into its bilayer leaflet side in case of the diseased lipid mixture, whereas there is no insertion for the native mixture. Insertion increases the local membrane curvature, and could be caused by a decrease of the sphingomyelin content of the diseased lipid mixture. These findings can help to open a pathway to remyelination strategies.


Assuntos
Membrana Celular/metabolismo , Esclerose Múltipla/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Animais , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Ovinos , Suínos
14.
Open Biol ; 10(9): 200144, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32931722

RESUMO

Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants and algae. Although the process is extensively studied, little is known about its relationship with ultrastructural changes of the thylakoid membranes. In order to better understand this relationship, we studied the effects of illumination on the organization of thylakoid membranes in Monstera deliciosa leaves. This evergreen species is known to exhibit very large NPQ and to possess giant grana with dozens of stacked thylakoids. It is thus ideally suited for small-angle neutron scattering measurements (SANS)-a non-invasive technique, which is capable of providing spatially and statistically averaged information on the periodicity of the thylakoid membranes and their rapid reorganizations in vivo. We show that NPQ-inducing illumination causes a strong decrease in the periodic order of granum thylakoid membranes. Development of NPQ and light-induced ultrastructural changes, as well as the relaxation processes, follow similar kinetic patterns. Surprisingly, whereas NPQ is suppressed by diuron, it impedes only the relaxation of the structural changes and not its formation, suggesting that structural changes do not cause but enable NPQ. We also demonstrate that the diminishment of SANS peak does not originate from light-induced redistribution and reorientation of chloroplasts inside the cells.


Assuntos
Araceae/química , Membranas Intracelulares/química , Nêutrons , Folhas de Planta/química , Espalhamento a Baixo Ângulo , Tilacoides/genética , Difração de Raios X , Membranas Intracelulares/metabolismo , Luz , Tilacoides/metabolismo
15.
Materials (Basel) ; 13(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213913

RESUMO

Electrochemical energy conversion and storage is key for the use of regenerative energies at large scale. A thorough understanding of the individual components, such as the ion conducting membrane and the electrode layers, can be obtained with scattering techniques on atomic to molecular length scales. The largely heterogeneous electrode layers of High-Temperature Polymer Electrolyte Fuel Cells are studied in this work with small- and wide-angle neutron scattering at the same time with the iMATERIA diffractometer at the spallation neutron source at J-PARC, opening a view on structural properties on atomic to mesoscopic length scales. Recent results on the proton mobility from the same samples measured with backscattering spectroscopy are put into relation with the structural findings.

16.
J Struct Biol ; 209(1): 107411, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689503

RESUMO

Dystrophin is a large intracellular protein that prevents sarcolemmal ruptures by providing a mechanical link between the intracellular actin cytoskeleton and the transmembrane dystroglycan complex. Dystrophin deficiency leads to the severe muscle wasting disease Duchenne Muscular Dystrophy and the milder allelic variant, Becker Muscular Dystrophy (DMD and BMD). Previous work has shown that concomitant interaction of the actin binding domain 2 (ABD2) comprising spectrin like repeats 11 to 15 (R11-15) of the central domain of dystrophin, with both actin and membrane lipids, can greatly increase membrane stiffness. Based on a combination of SAXS and SANS measurements, mass spectrometry analysis of cross-linked complexes and interactive low-resolution simulations, we explored in vitro the molecular properties of dystrophin that allow the formation of ABD2-F-actin and ABD2-membrane model complexes. In dystrophin we identified two subdomains interacting with F-actin, one located in R11 and a neighbouring region in R12 and another one in R15, while a single lipid binding domain was identified at the C-terminal end of R12. Relative orientations of the dystrophin central domain with F-actin and a membrane model were obtained from docking simulation under experimental constraints. SAXS-based models were then built for an extended central subdomain from R4 to R19, including ABD2. Overall results are compatible with a potential F-actin/dystrophin/membrane lipids ternary complex. Our description of this selected part of the dystrophin associated complex bridging muscle cell membrane and cytoskeleton opens the way to a better understanding of how cell muscle scaffolding is maintained through this essential protein.


Assuntos
Distrofina/ultraestrutura , Distrofia Muscular de Duchenne/genética , Sarcolema/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actinas/ultraestrutura , Distrofina/genética , Humanos , Lipídeos/química , Lipídeos/genética , Distrofia Muscular de Duchenne/patologia , Ligação Proteica , Sarcolema/ultraestrutura , Espalhamento a Baixo Ângulo , Fatores de Complexo Ternário/genética , Fatores de Complexo Ternário/ultraestrutura , Difração de Raios X
17.
ChemSusChem ; 13(3): 601-607, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769195

RESUMO

Nonionic ethylene oxide (EO)-based surfactants are widely employed in commercial applications and normally form gel-like liquid crystalline phases at higher concentrations, rendering their handling under such conditions difficult. By incorporating CO2 units in their hydrophilic head groups, the consumption of the petrochemical EO was reduced, and the tendency to form liquid crystals was suppressed completely. This surprising behavior was characterized by rheology and studied with respect to its structural origin by means of small-angle neutron scattering (SANS). These experiments showed a strongly reduced repulsive interaction between the micellar aggregates, attributed to a reduced hydration and enhanced interpenetration of the head groups owing to the presence of the CO2 units. In addition, with increasing CO2 content the surfactants became more efficient and effective with respect to their surface activity. These findings are important because the renewable resource CO2 is used, and the CO2 -containing surfactants allow handling at very high concentrations, an aspect of enormous practical importance.

18.
Biophys J ; 117(10): 1858-1869, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31703802

RESUMO

We addressed the onset of synergistic activity of the two well-studied antimicrobial peptides magainin 2 (MG2a) and PGLa using lipid-only mimics of Gram-negative cytoplasmic membranes. Specifically, we coupled a joint analysis of small-angle x-ray and neutron scattering experiments on fully hydrated lipid vesicles in the presence of MG2a and L18W-PGLa to all-atom and coarse-grained molecular dynamics simulations. In agreement with previous studies, both peptides, as well as their equimolar mixture, were found to remain upon adsorption in a surface-aligned topology and to induce significant membrane perturbation, as evidenced by membrane thinning and hydrocarbon order parameter changes in the vicinity of the inserted peptide. These effects were particularly pronounced for the so-called synergistic mixture of 1:1 (mol/mol) L18W-PGLa/MG2a and cannot be accounted for by a linear combination of the membrane perturbations of two peptides individually. Our data are consistent with the formation of parallel heterodimers at concentrations below a synergistic increase of dye leakage from vesicles. Our simulations further show that the heterodimers interact via salt bridges and hydrophobic forces, which apparently makes them more stable than putatively formed antiparallel L18W-PGLa and MG2a homodimers. Moreover, dimerization of L18W-PGLa and MG2a leads to a relocation of the peptides within the lipid headgroup region as compared to the individual peptides. The early onset of dimerization of L18W-PGLa and MG2a at low peptide concentrations consequently appears to be key to their synergistic dye-releasing activity from lipid vesicles at high concentrations.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Lipídeos/química , Magaininas/metabolismo , Dimerização , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidiletanolaminas , Fosfatidilgliceróis , Temperatura
19.
Sci Rep ; 9(1): 15278, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649279

RESUMO

Three synthetized polymorphs of calcium carbonate have been tested in combination with the suspension of nanolime particles as potential consolidating agents for contrasting stone decay and overcome some of the limitations of nanolime agents when applied to substrates with large porosity. The modifications induced in the pore network of the Maastricht limestone were analyzed with microscopy and in a non-invasive fashion with small angle neutron scattering and synchrotron radiation micro-computed tomography. A reduction in porosity and pore accessibility at the micrometric scale was detected with the latter technique, and ascribed to the improved pore-filling capacity of the consolidation agent containing CaCO3 particles. These were found to be effectively bound to the carbonated nanolime, strengthening the pore-matrix microstructure. Penetration depth and positive effect on porosity were found to depend on the particle size and shape. Absence of significant changes in the fractal nature of the pore surface at the nanoscale, was interpreted as indication of the negligible contribution of nanolime-based materials in the consolidation of stones with large porosity. However, the results indicate that in such cases, their effectiveness may be enhanced when used in combination with CaCO3 particles, owing to the synergic effect of chemical/structural compatibility and particle size distribution.

20.
J Mater Chem B ; 7(42): 6539-6555, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31584603

RESUMO

To unveil the effect of electrolyte concentration, pH and polymer addition on Tween 80 stabilized nanostructured lipid carriers (NLCs, based on dialkyldimethylammonium bromides DxDAB and Na oleate), an in-depth scattering analysis was performed. Dynamic and static light scattering (DLS/SLS) and small-angle neutron scattering (SANS) techniques along with zeta potential studies were exploited to understand the structural evolution and physical stability of NLCs. In these experiments, we varied the salt concentration, pH, and the admixture of Pluronic F127 in order to elucidate their effect on NLC morphologies. In most cases, two populations of different sizes are present which differ by one order of magnitude. The antileprosy drugs (ALD) Rifampicin and Dapsone were encapsulated in NLCs and the vector properties were assessed for a series of DxDAB (where x = 12, 14, 16 and 18) NLCs. The influence of composition on the entrapment and release behavior of NLCs was investigated: The size of NLCs correlates with the release rate of the incorporated drug. The interaction of drug-loaded NLCs with bovine serum albumin was studied to understand the release of ALD in the plasma.


Assuntos
Dapsona/farmacologia , Portadores de Fármacos/química , Hansenostáticos/farmacologia , Nanopartículas/química , Compostos de Amônio Quaternário/química , Rifampina/farmacologia , Animais , Bovinos , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Cinética , Nanopartículas/metabolismo , Poloxâmero/química , Poloxâmero/metabolismo , Ligação Proteica , Compostos de Amônio Quaternário/metabolismo , Soroalbumina Bovina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA