Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38927013

RESUMO

Ovarian cancer (OC) is one of the most lethal gynecologic cancers that is typically diagnosed at the very late stage of disease progression. Thus, there is an unmet need to develop diagnostic probes for early detection of OC. One approach may rely on RNA as a molecular biomarker. In this regard, FLJ22447 lncRNA is an RNA biomarker that is over-expressed in ovarian cancer (OC) and in cancer-associated fibroblasts (CAFs). CAFs appear early on in OC as they provide a metastatic niche for OC progression. FIT-PNAs (forced intercalation-peptide nucleic acids) are DNA analogs that are designed to fluoresce upon hybridization to their complementary RNA target sequence. In recent studies, we have shown that the introduction of cyclopentane PNAs into FIT-PNAs (cpFIT-PNA) results in superior RNA sensors. Herein, we report the design and synthesis of cpFIT-PNAs for the detection of this RNA biomarker in living OC cells (OVCAR8) and in CAFs. cpFIT-PNA was compared to FIT-PNA and the cell-penetrating peptide (CPP) of choice was either a simple one (four L-lysines) or a CPP with enhanced cellular uptake (CLIP6). The combination of CLIP6 with cpFIT-PNA resulted in a superior sensing of FLJ22447 lncRNA in OVCAR8 cells as well as in CAFs. Moreover, incubation of CLIP6-cpFIT-PNA in OVCAR8 cells leads to a significant decrease (ca. 60%) in FLJ22447 lncRNA levels and in cell viability, highlighting the potential theranostic use of such molecules.


Assuntos
Ciclopentanos , Neoplasias Ovarianas , Ácidos Nucleicos Peptídicos , RNA Longo não Codificante , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ácidos Nucleicos Peptídicos/química , Ciclopentanos/química , Ciclopentanos/farmacologia , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
2.
ACS Sens ; 9(3): 1458-1464, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38446423

RESUMO

The evolution of drug resistance to many antimalarial drugs in the lethal strain of malaria (Plasmodium falciparum) has been a great concern over the past 50 years. Among these drugs, artemisinin has become less effective for treating malaria. Indeed, several P. falciparum variants have become resistant to this drug, as elucidated by specific mutations in the pfK13 gene. This study presents the development of a diagnostic kit for the detection of a common point mutation in the pfK13 gene of P. falciparum, namely, the C580Y point mutation. FIT-PNAs (forced-intercalation peptide nucleic acid) are DNA mimics that serve as RNA sensors that fluoresce upon hybridization to their complementary RNA. Herein, FIT-PNAs were designed to sense the C580Y single nucleotide polymorphism (SNP) and were conjugated to biotin in order to bind these molecules to streptavidin-coated plates. Initial studies with synthetic RNA were conducted to optimize the sensing system. In addition, cyclopentane-modified PNA monomers (cpPNAs) were introduced to improve FIT-PNA sensing. Lastly, total RNA was isolated from red blood cells infected with P. falciparum (WT strain - NF54-WT or mutant strain - NF54-C580Y). Streptavidin plates loaded with either FIT-PNA or cpFIT-PNA were incubated with the total RNA. A significant difference in fluorescence for mutant vs WT total RNA was found only for the cpFIT-PNA probe. In summary, this study paves the way for a simple diagnostic kit for monitoring artemisinin drug resistance that may be easily adapted to malaria endemic regions.


Assuntos
Artemisininas , Malária Falciparum , Ácidos Nucleicos Peptídicos , Humanos , Plasmodium falciparum/genética , Estreptavidina , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/farmacologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Resistência a Medicamentos/genética , RNA
3.
ACS Pharmacol Transl Sci ; 7(1): 259-273, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38250006

RESUMO

Sulfanylbenzamide thioesters are molecules with anti-HIV activity that disrupt zinc coordination in the viral protein NCp7. These molecules are useful as topical microbicides; however, they are too unstable to be used systemically. In this article, a nitroimidazole prodrug was used to protect the sulfanylbenzamide to convey blood stability and oral bioavailability to the molecule. Studies on the molecule called nipamovir were performed to assess the rate of prodrug cleavage, antiviral activity, mechanism of metabolism, and in vivo pharmacokinetics in several different species. An efficient and inexpensive synthesis of nipamovir is also described. The results indicate that nipamovir could be further developed as a new type of drug to treat HIV infection.

4.
Chem Commun (Camb) ; 59(77): 11593, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37711096

RESUMO

Correction for 'Cyclopentane FIT-PNAs: bright RNA sensors' by Odelia Tepper et al., Chem. Commun., 2021, 57, 540-543, https://doi.org/10.1039/D0CC07400D.

5.
JACS Au ; 3(7): 1952-1964, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502163

RESUMO

Selective incorporation of conformational constraints into thyclotides can be used to modulate their binding to complementary oligonucleotides, increase polarity, and optimize uptake into HCT116 cells without assistance from moieties known to promote cell uptake. The X-ray structure and biophysical studies of a thyclotide-DNA duplex reveal that incorporation of tetrahydrofurans into an aegPNA backbone promotes a helical conformation that enhances binding to complementary DNA and RNA. Selective incorporation of tetrahydrofurans into the aegPNA backbone allows polarity to be increased incrementally so that uptake into HCT116 cells can be optimized. The enhanced binding, polarity, and cellular uptake properties of thyclotides were used to demonstrate effective inhibition of microRNA-21 in HCT116 cells.

7.
Nat Microbiol ; 8(5): 905-918, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024617

RESUMO

The human immunodeficiency virus epidemic continues in sub-Saharan Africa, and particularly affects adolescent girls and women who have limited access to antiretroviral therapy. Here we report that the risk of vaginal simian immunodeficiency virus (SIV)mac251 acquisition is reduced by more than 90% using a combination of a vaccine comprising V1-deleted (V2 enhanced) SIV envelope immunogens with topical treatment of the zinc-finger inhibitor SAMT-247. Following 14 weekly intravaginal exposures to the highly pathogenic SIVmac251, 80% of a cohort of 20 macaques vaccinated and treated with SAMT-247 remained uninfected. In an arm of 18 vaccinated-only animals without microbicide, 40% of macaques remained uninfected. The combined SAMT-247/vaccine regimen was significantly more effective than vaccination alone. By analysing immune correlates of protection, we show that, by increasing zinc availability, SAMT-247 increases natural killer cytotoxicity and monocyte efferocytosis, and decreases T-cell activation to augment vaccine-induced protection.


Assuntos
Anti-Infecciosos , Vacinas contra a SAIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vacinas , Animais , Humanos , Feminino , Adolescente , Macaca mulatta
8.
ACS Pharmacol Transl Sci ; 5(10): 993-1006, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36268125

RESUMO

Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.

9.
Nucleic Acids Res ; 50(19): 10839-10856, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36215040

RESUMO

Peptide nucleic acids (PNAs) are promising therapeutic molecules for gene modulation; however, they suffer from poor cell uptake. Delivery of PNAs into cells requires conjugation of the PNA to another large molecule, typically a cell-penetrating peptide or nanoparticle. In this study, we describe a new PNA-based molecule with cyclic tetrahydrofuran (THF) backbone modifications that in some cases considerably improve cell uptake. We refer to these THF-PNA oligomers as thyclotides. With THF groups at every position of the oligomer, the cell uptake of thyclotides targeted to miR-21 is enhanced compared with the corresponding unmodified PNA based on an aminoethylglycine backbone. An optimized thyclotide can efficiently enter cells without the use of cell-penetrating peptides, bind miR-21, its designated microRNA target, decrease expression of miR-21 and increase expression of three downstream targets (PTEN, Cdc25a and KRIT1). Using a plasmid with the PTEN-3'UTR coupled with luciferase, we further confirmed that a miR-21-targeted thyclotide prevents miR-21 from binding to its target RNA. Additionally, the thyclotide shows no cytotoxicity when administered at 200 times its active concentration. We propose that thyclotides be further explored as therapeutic candidates to modulate miRNA levels.


Assuntos
Peptídeos Penetradores de Células , MicroRNAs , Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Peptídeos Penetradores de Células/genética , Furanos/farmacologia
10.
Eur J Med Chem ; 243: 114763, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36179402

RESUMO

The wild-type p53 induced phosphatase 1 (Wip1), a member of the serine/threonine-specific PP2C family, is overexpressed in numerous human cancers. Wip1 dephosphorylates p53 as well as several kinases (such as p38 MAPK, ATM, Chk1, and Chk2) in the DNA damage response pathway that are responsible for maintaining genomic stability and preventing oncogenic transformation. As a result, Wip1 is an attractive target for synthetic inhibitors that could be further developed into therapeutics to treat some cancers. In this study, we report a series of alkyl-substituted N-methylaryl-N'-aryl-4-aminobenzamides and their inhibitory activity of the Wip1 phosphatase. A straightforward synthetic route was developed to synthesize the target compounds from commercially available starting materials. Three different portions (R1, R2, R3) of the core scaffold were extensively modified to examine structure-activity relationships. This study revealed interesting trends about a new molecular scaffold to inhibit Wip1.


Assuntos
Fosfoproteínas Fosfatases , Proteína Supressora de Tumor p53 , Humanos , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Serina-Treonina Quinases , Dano ao DNA , Fosforilação
11.
Biopolymers ; 113(3): e23481, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34812507

RESUMO

Routine patient testing for viral infections is critical to identify infected individuals for treatment and to prevent spreading of infections to others. Developing robust and reliable diagnostic tools to detect nucleic acids of viruses at the point-of-care could greatly assist the clinical management of viral infections. The remarkable stability and high binding affinity of peptide nucleic acids (PNAs) to target nucleic acids could make PNA-based biosensors an excellent starting point to develop new nucleic acid detection technologies. We report the application of cyclopentane-modified PNAs to capture target nucleic acids in a microfluidic channel, and the use of bioorthogonal PNAs conjugated to gold nanoparticles as probes to semi-quantitatively signal the presence of a target nucleic acid derived from HIV-1. The basic results presented could be used to develop more advanced devices to detect nucleic acids from viruses such as HIV, SARS-CoV-2, and a wide range of other human diseases.


Assuntos
COVID-19 , Nanopartículas Metálicas , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , COVID-19/diagnóstico , Ciclopentanos , Ouro , Humanos , Microfluídica , SARS-CoV-2/genética
12.
Nucleic Acids Res ; 49(2): 713-725, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33406227

RESUMO

We report a series of synthetic, nucleic acid mimics with highly customizable thermodynamic binding to DNA. Incorporation of helix-promoting cyclopentanes into peptide nucleic acids (PNAs) increases the melting temperatures (Tm) of PNA+DNA duplexes by approximately +5°C per cyclopentane. Sequential addition of cyclopentanes allows the Tm of PNA + DNA duplexes to be systematically fine-tuned from +5 to +50°C compared with the unmodified PNA. Containing only nine nucleobases and an equal number of cyclopentanes, cpPNA-9 binds to complementary DNA with a Tm around 90°C. Additional experiments reveal that the cpPNA-9 sequence specifically binds to DNA duplexes containing its complementary sequence and functions as a PCR clamp. An X-ray crystal structure of the cpPNA-9-DNA duplex revealed that cyclopentanes likely induce a right-handed helix in the PNA with conformations that promote DNA binding.


Assuntos
Ciclopentanos/química , DNA/metabolismo , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Calorimetria , Dicroísmo Circular , Cristalografia por Raios X , Ciclopentanos/metabolismo , Modelos Moleculares , Desnaturação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Espectrofotometria Ultravioleta , Termodinâmica , Temperatura de Transição
13.
Chem Commun (Camb) ; 57(4): 540-543, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33336664

RESUMO

Cyclopentane modified FIT-PNA (cpFIT-PNA) probes are reported as highly emissive RNA sensors with the highest reported brightness for FIT-PNAs. Compared to FIT-PNAs, cpFIT-PNAs have improved mismatch discrimination for several pyrimidine-pyrimidine single nucleotide variants (SNVs).


Assuntos
Benzotiazóis/química , Ciclopentanos/química , Corantes Fluorescentes/química , Ácidos Nucleicos Peptídicos/química , Quinolinas/química , RNA/análise , Limite de Detecção , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/genética , RNA/genética , Espectrometria de Fluorescência
14.
J Immunol ; 204(12): 3315-3328, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32393514

RESUMO

Because of microbicide noncompliance and lack of a durable, highly effective vaccine, a combined approach might improve HIV prophylaxis. We tested whether a vaccine-microbicide combination would enhance protection against SIV infection in rhesus macaques. Four macaque groups included vaccine only, vaccine-microbicide, microbicide only, and controls. Vaccine groups were primed twice mucosally with replicating adenovirus type 5 host range mutant SIV env/rev, gag, and nef recombinants and boosted twice i.m. with SIV gp120 proteins in alum. Controls and the microbicide-only group received adenovirus type 5 host range mutant empty vector and alum. The microbicide was SAMT-247, a 2-mercaptobenzamide thioester that targets the viral nucleocapsid protein NCp7, causing zinc ejection and preventing RNA encapsidation. Following vaccination, macaques were challenged intravaginally with repeated weekly low doses of SIVmac251 administered 3 h after application of 0.8% SAMT-247 gel (vaccine-microbicide and microbicide groups) or placebo gel (vaccine-only and control groups). The microbicide-only group exhibited potent protection; 10 of 12 macaques remained uninfected following 15 SIV challenges. The vaccine-only group developed strong mucosal and systemic humoral and cellular immunity but did not exhibit delayed acquisition compared with adjuvant controls. However, the vaccine-microbicide group exhibited significant acquisition delay compared with both control and vaccine-only groups, indicating further exploration of the combination strategy is warranted. Impaired protection in the vaccine-microbicide group compared with the microbicide-only group was not attributed to a vaccine-induced increase in SIV target cells. Possible Ab-dependent enhancement will be further investigated. The potent protection provided by SAMT-247 encourages its movement into human clinical trials.


Assuntos
Anti-Infecciosos/farmacologia , Benzamidas/farmacologia , Macaca mulatta/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Adenoviridae/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antivirais/imunologia , Células Cultivadas , Feminino , Produtos do Gene gag/imunologia , Vetores Genéticos/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Macaca mulatta/virologia , Glicoproteínas de Membrana/imunologia , Projetos Piloto , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/imunologia
15.
Molecules ; 25(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059456

RESUMO

This review describes the application of peptide nucleic acids (PNAs) as clamps that prevent nucleic acid amplification of wild-type DNA so that DNA with mutations may be observed. These methods are useful to detect single-nucleotide polymorphisms (SNPs) in cases where there is a small amount of mutated DNA relative to the amount of normal (unmutated/wild-type) DNA. Detecting SNPs arising from mutated DNA can be useful to diagnose various genetic diseases, and is especially important in cancer diagnostics for early detection, proper diagnosis, and monitoring of disease progression. Most examples use PNA clamps to inhibit PCR amplification of wild-type DNA to identify the presence of mutated DNA associated with various types of cancer.


Assuntos
DNA de Neoplasias/genética , Neoplasias/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Humanos , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética
16.
J Biol Chem ; 294(46): 17654-17668, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31481464

RESUMO

WT P53-Induced Phosphatase 1 (WIP1) is a member of the magnesium-dependent serine/threonine protein phosphatase (PPM) family and is induced by P53 in response to DNA damage. In several human cancers, the WIP1 protein is overexpressed, which is generally associated with a worse prognosis. Although WIP1 is an attractive therapeutic target, no potent, selective, and bioactive small-molecule modulator with favorable pharmacokinetics has been reported. Phosphatase enzymes are among the most challenging targets for small molecules because of the difficulty of achieving both modulator selectivity and bioavailability. Another major obstacle has been the availability of robust and physiologically relevant phosphatase assays that are suitable for high-throughput screening. Here, we describe orthogonal biochemical WIP1 activity assays that utilize phosphopeptides from native WIP1 substrates. We optimized an MS assay to quantify the enzymatically dephosphorylated peptide reaction product in a 384-well format. Additionally, a red-shifted fluorescence assay was optimized in a 1,536-well format to enable real-time WIP1 activity measurements through the detection of the orthogonal reaction product, Pi We validated these two optimized assays by quantitative high-throughput screening against the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection and used secondary assays to confirm and evaluate inhibitors identified in the primary screen. Five inhibitors were further tested with an orthogonal WIP1 activity assay and surface plasmon resonance binding studies. Our results validate the application of miniaturized physiologically relevant and orthogonal WIP1 activity assays to discover small-molecule modulators from high-throughput screens.


Assuntos
Ativadores de Enzimas/química , Fosfopeptídeos/química , Proteína Fosfatase 2C/química , Bibliotecas de Moléculas Pequenas/química , Ativadores de Enzimas/isolamento & purificação , Ativadores de Enzimas/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Proteína Fosfatase 2C/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato , Proteína Supressora de Tumor p53/química
17.
Proc Natl Acad Sci U S A ; 116(37): 18684-18690, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451647

RESUMO

Given the global epidemic in type 2 diabetes, novel antidiabetic drugs with increased efficacy and reduced side effects are urgently needed. Previous work has shown that M3 muscarinic acetylcholine (ACh) receptors (M3Rs) expressed by pancreatic ß cells play key roles in stimulating insulin secretion and maintaining physiological blood glucose levels. In the present study, we tested the hypothesis that a positive allosteric modulator (PAM) of M3R function can improve glucose homeostasis in mice by promoting insulin release. One major advantage of this approach is that allosteric agents respect the ACh-dependent spatiotemporal control of M3R activity. In this study, we first demonstrated that VU0119498, a drug known to act as a PAM at M3Rs, significantly augmented ACh-induced insulin release from cultured ß cells and mouse and human pancreatic islets. This stimulatory effect was absent in islets prepared from mice lacking M3Rs, indicative of the involvement of M3Rs. VU0119498 treatment of wild-type mice caused a significant increase in plasma insulin levels, accompanied by a striking improvement in glucose tolerance. These effects were mediated by ß-cell M3Rs, since they were absent in mutant mice selectively lacking M3Rs in ß cells. Moreover, acute VU0119498 treatment of obese, glucose-intolerant mice triggered enhanced insulin release and restored normal glucose tolerance. Interestingly, doses of VU0119498 that led to pronounced improvements in glucose homeostasis did not cause any significant side effects due to activation of M3Rs expressed by other peripheral cell types. Taken together, the data from this proof-of-concept study strongly suggest that M3R PAMs may become clinically useful as novel antidiabetic agents.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M3/efeitos dos fármacos , Acetilcolina/metabolismo , Adulto , Regulação Alostérica/efeitos dos fármacos , Animais , Glicemia/análise , Glicemia/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Pessoa de Meia-Idade , Agonistas Muscarínicos/uso terapêutico , Obesidade/sangue , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Cultura Primária de Células , Estudo de Prova de Conceito , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Adulto Jovem
18.
Eur J Med Chem ; 178: 818-837, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31252286

RESUMO

Mercaptobenzamide thioesters and thioethers are chemically simple HIV-1 maturation inhibitors with a unique mechanism of action, low toxicity, and a high barrier to viral resistance. A structure-activity relationship (SAR) profile based on 39 mercaptobenzamide prodrug analogs exposed divergent activity/toxicity roles for the internal and terminal amides. To probe the relationship between antiviral activity and toxicity, we generated an improved computational model for the binding of mercaptobenzamide thioesters (SAMTs) to the HIV-1 NCp7 C-terminal zinc finger, revealing the presence of a second low-energy binding orientation, hitherto undisclosed. Finally, using NMR-derived thiol-thioester exchange equilibrium constants, we propose that thermodynamics plays a role in determining the antiviral activity observed in the SAR profile.


Assuntos
Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Benzamidas/metabolismo , Benzamidas/farmacologia , HIV-1/efeitos dos fármacos , Termodinâmica , Fármacos Anti-HIV/química , Benzamidas/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
19.
J Am Chem Soc ; 141(20): 8327-8338, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31042030

RESUMO

For HIV to become infectious, any new virion produced from an infected cell must undergo a maturation process that involves the assembly of viral polyproteins Gag and Gag-Pol at the membrane surface. The self-assembly of these viral proteins drives formation of a new viral particle as well as the activation of HIV protease, which is needed to cleave the polyproteins so that the final core structure of the virus will properly form. Molecules that interfere with HIV maturation will prevent any new virions from infecting additional cells. In this manuscript, we characterize the unique mechanism by which a mercaptobenzamide thioester small molecule (SAMT-247) interferes with HIV maturation via a series of selective acetylations at highly conserved cysteine and lysine residues in Gag and Gag-Pol polyproteins. The results provide the first insights into how acetylation can be utilized to perturb the process of HIV maturation and reveal a new strategy to limit the infectivity of HIV.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzamidas/farmacologia , HIV/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Montagem de Vírus/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/efeitos dos fármacos , Acetilação , Sequência de Aminoácidos , Linhagem Celular , Cisteína/química , Proteínas de Fusão gag-pol/química , Proteínas de Fusão gag-pol/efeitos dos fármacos , Humanos , Lisina/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
20.
Methods Mol Biol ; 1973: 131-145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016699

RESUMO

Displaying ligands in a succinct and predictable manner is essential for elucidating multivalent molecular-level binding events. Organizing ligands with high precision and accuracy provides a distinct advantage over other ligand-display systems, such as polymers, because the number and position of the ligand(s) can be accurately and fully characterized. Here we describe the synthesis of peptide nucleic acids (PNAs), which are oligonucleotide mimics with a pseudopeptide backbone that can hybridize to oligonucleotides through Watson-Crick base pair to form highly predictable and organized scaffold for organizing a ligand. The ligand(s) are covalently attached to the PNA through a squarate coupling reaction that occurs between a free amine on the ligand and a free amine appended to the pseudopeptide backbone of the PNA. In this chapter we describe the synthesis of a LKγT monomer, which ultimately yields the free amine off the backbone of the PNA, incorporation of the monomer in a PNA oligomer, and the sequential squarate coupling to conjugate the ligand.


Assuntos
Oligonucleotídeos/química , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/síntese química , Ligantes , Modelos Moleculares , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA