Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36983505

RESUMO

Late leaf rust is a fungal disease in raspberries caused by Aculeastrum americanum (Farl.) M. Scholler U. Braun (syn. Thekopsora americana (Farl.) Aime McTaggart) leading to early defoliation and yield losses. Red raspberries (Rubus idaeus L.) are susceptible to this pathogen, although this susceptibility varies among cultivars. In contrast, black raspberries were previously reported to be more resistant (Rubus occidentalis L.) and immune (Rubus niveus Thunb.) to this pathogen, raising their importance in plant breeding programs. However, what features make them respond differently to the same pathogen? In this study, we characterize for the first time the pre- and post-formed structural and biochemical defense mechanisms of R. idaeus cv. Autumn Bliss, R. occidentalis and R. niveus. Ultrastructural and histopathological analyses were used to uncover the interactions between these raspberries and A. americanum. The ultrastructural results indicate that the pathogen germinates on both leaf surfaces but can only form appressoria on the stomata. Although the three raspberry species were infected and colonized by A. americanum, a clear difference in susceptibility was observed between them. A compact mesophyll, pre- and post-formed phenolic compounds, and post-formed pectic compounds were the main plant defense mechanisms against fungal colonization. These findings provide new information about raspberries' defense mechanisms in response to A. americanum and elucidate the interactions occurring in these pathosystems.

2.
Plants (Basel) ; 12(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679007

RESUMO

The epidermis and cuticle play an important role in reducing dehydration and protecting the cashew pseudofruit in both the production environment and the postharvest stage. This study analyzes the alterations on the epidermis and cuticle of CCP 76 cashew pseudofruits harvested in five developmental and maturation stages (S1, S2, S3, S4, and S5). The epidermis and cuticle of the samples were analyzed under light microscopy (LM) (quantitative analysis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The epidermal cells at S3 reached maximum outer periclinal wall thickness, which reduced during ripening (S4 and S5), while the cuticle increased in thickness during the same period. These changes coincided with the rapid initial growth of the cashew pseudofruit when the epidermis and cuticle need to accompany the expansion of internal tissues. At the ultrastructural level, lipid material is transported via vesicles through the cell wall to the cuticle, increasing its thickness. Epicuticular waxes, previously deposited as plates and globules, began to develop an amorphous shape during maturation. This process possibly occurs due to changes in wax composition that can be related to the development of greasiness on the fruit skin. These findings provide a better understanding of cashew pseudofruit skin, which will aid future studies and strategies to preserve quality during the postharvest stage.

3.
Phytopathology ; 112(10): 2062-2071, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35509210

RESUMO

Colonization of the xylem of sugarcane by Leifsonia xyli subsp. xyli results in the occlusion of the vessels by a gum-like compound and compromises the elongation of the stalk leading to stunted plants. However, no study has been performed in the apical tissue where the elongation of the stalks initiates at the intercalary meristem (IM). Microscopic and histochemical analyses were performed in plants with lower and higher bacterial titers and revealed that in both cases L. xyli subsp. xyli is present in this tissue and colonizes the forming xylem vessels in a similar way as observed in developed internodes. In both cases, it was observed adhering to the secondary walls, but only in plants with higher titers were a mild degradation of the walls and a granular material filling the vessels observed. The mixed composition of lipids, proteins, and pectin indicates that the filling is not a bacterial extracellular polymeric substance. Plants with higher bacterial populations also presented lower starch content in the ground parenchyma at the node elements, possibly resulting from the reported downregulation of photosynthesis and increased accumulation of phenolics. Their second and third IMs presented fewer cells and reduced expression of genes related to the cell cycle and to the synthesis of ABA in the apical tissue. These results indicate that increased L. xyli subsp. xyli colonization affects the development of the IM, which ultimately would reduce the length of the internodes, resulting in the main symptom of the disease.


Assuntos
Actinomycetales , Saccharum , Actinobacteria , Actinomycetales/fisiologia , Matriz Extracelular de Substâncias Poliméricas , Lipídeos , Pectinas , Doenças das Plantas/microbiologia , Saccharum/microbiologia , Amido , Ápice Dentário
4.
Oecologia ; 199(1): 153-164, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35471620

RESUMO

Belowground bud bank regeneration is a successful strategy for plants in fire-prone communities. It depends on the number and location of dormant and viable buds stored on belowground organs. A highly diverse belowground bud-bearing organ system maintained by a frequent interval of fire events guarantees the supply of a bud bank that enables plants to persist and resprout after disturbance. We investigated how different fire exclusion and fire frequencies, affected the herbaceous layer in tropical savannas, by assessing belowground persistence and regeneration traits. Contrary to our hypothesis, we found that under a shorter fire exclusion period, the total bud bank increased at a lower fire frequency. But sites at longer fire exclusion and infrequent fire, the bud bank was smaller the longer the period since the last fire. However, the major shift was concerning organ diversity since fire exclusion was more related to loss of belowground diversity rather than decreasing of the belowground bud bank size. Furthermore, fire-associated bud-bearing structures like xylopodia disappeared in the fire suppressed areas, whereas clonal organs, such as rhizomes, developed in the bud bank. By quantifying belowground bud bank traits under different fire histories, we highlight the importance of the local fire regime on the composition of the belowground plant components, which can affect the tropical savanna aboveground plant community. Given that, loss of the belowground bud-bearing component of the plant community will have a direct effect on vegetation regeneration in post-fire environments, and consequently, on plant community resilience.


Assuntos
Incêndios , Pradaria , Ecossistema , Plantas
5.
Neotrop Entomol ; 51(1): 112-121, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34932199

RESUMO

The Neotropical brown stink bug, Euschistus heros (F.), feeds on stems, leaves, pods, and seeds of soybean, Glycine max (L.) Merrill. Knowledge of the damage that nymphs at different instars can cause to soybean pods and seeds, as well as efficient histological techniques for locating the salivary sheath are sparse. This study developed a new double-staining method to facilitate distinguishing the salivary sheath from plant tissues and to anatomically evaluate the damage caused by nymphs of different instars as they feed on soybean pods and seeds. Five insects from each of the analyzed instars (1st, 2nd, 3rd, 4th, and 5th) per pod at the R6 stage (full pod-filling) were kept in clip cages for 48 h of feeding. The salivary sheath was analyzed to localize the damage (pod, vascular bundle, and seed) and the depth reached by the damage (categorized tissue). Double staining with xylidine ponceau and toluidine blue provided the best differentiation between the salivary sheath and watery sheath (proteins stained red) and the plant tissues (stained blue). First instar nymphs do not feed. Second instar and older nymphs caused damage to seeds, which became more severe with later developmental stages. The damage consists of coalescence of protein bodies and degradation and breakdown of the cell wall, marked by darkened regions in the embryo tissue of seeds. The information generated will contribute to new studies on feeding habits and emphasizes the need to control E. heros in early development stages.


Assuntos
Glycine max , Heterópteros , Animais , Comportamento Alimentar , Técnicas Histológicas , Ninfa , Sementes
6.
Protoplasma ; 258(5): 963-977, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33651219

RESUMO

Phytomelanin is a brown to black pigment found in plant tissues, mainly in Asparagales and Asteraceae species. However, few studies deal with the processes of its synthesis, and there are still many questions to be answered regarding the organelles involved in this process and their functions, especially in vegetative organs. In a previous study with stems and leaves of 77 Vernonieae (Asteraceae) species, phytomelanin was demonstrated to always be associated with sclereids, which suggests the involvement of these cells in the pigment synthesis. Thus, we selected another species of tribe Vernonieae, Piptocarpha axillaris (Less.) Baker, which produces abundant phytomelanin secretion in stem tissues, to investigate which cells and organelles are involved in the synthesis and release of this pigment, as well as its distribution in the tissues. To achieve this goal, stems in different developmental phases were analyzed under light and transmission electron microscopy. Anatomical analysis showed that the polymerization of phytomelanin in P. axillaris starts at the second stem node, in the pith region, and occurs simultaneously with sclereid differentiation. The plastids of cells that will differentiate into sclereids actively participate in the phenolic material synthesis, following the "tannosome" and the "pearl necklace" models, giving rise to the main precursor of phytomelanin, which is then polymerized in the intercellular spaces during the sclerification process of sclereids. In stems with an established secondary structure, the pigment can be observed more frequently in the cortex, pericycle, primary phloem, secondary phloem, and pith.


Assuntos
Asteraceae , Floema , Folhas de Planta , Caules de Planta , Plantas , Plastídeos
7.
Bol. latinoam. Caribe plantas med. aromát ; 20(1): 51-60, 2021. tab, graf
Artigo em Inglês | MOSAICO - Saúde integrativa, LILACS | ID: biblio-1145969

RESUMO

El extracto de cloroformo (CE) y las fracciones obtenidas de las raíces de Aldama arenaria se evaluaron para determinar su actividad antiproliferativa in vitro contra 10 líneas celulares tumorales humanas [leucemia (K-562), mama (MCF-7), ovario que expresa un fenotipo resistente a múltiples fármacos (NCI/ADR-RES), melanoma (UACC-62), pulmón (NCI-H460), próstata (PC-3), colon (HT29), ovario (OVCAR-3), glioma (U251) y riñón (786-0)]. CE presentó actividad antiproliferativa débil a moderada (log GI50 medio 1.07), mientras que las fracciones 3 y 4, enriquecidas con diterpenos de tipo pimarane [ent-pimara-8 (14), ácido 15-dien-19-oico y ent-8(14),15-pimaradien-3ß-ol], presentaron actividad moderada a potente para la mayoría de las líneas celulares, con un log GI50 medio de 0.62 y 0.59, respectivamente. Los resultados mostraron una acción antiproliferativa in vitro prometedora de las muestras obtenidas de A. arenaria, con los mejores resultados para NCI/ADR-RES, HT29 y OVCAR-3, y valores de TGI que van desde 5.95 a 28.71 µg.mL-1, demostrando que los compuestos de esta clase pueden ser prototipos potenciales para el descubrimiento de nuevos agentes terapéuticos.


Chloroform extract (CE) and fractions obtained from Aldama arenaria roots were evaluated for their in vitro antiproliferative activity against 10 human tumor cell lines [leukemia (K-562), breast (MCF-7), ovary expressing a multidrug-resistant phenotype (NCI/ADR-RES), melanoma (UACC-62), lung (NCI-H460), prostate (PC-3), colon (HT29), ovary (OVCAR-3), glioma (U251), and kidney (786-0)]. CE presented weak to moderate antiproliferative activity (mean log GI50 1.07), whereas fractions 3 and 4, enriched with pimarane-type diterpenes [ent-pimara-8(14),15-dien-19-oic acid and ent-8(14),15-pimaradien-3ß-ol], presented moderate to potent activity for most cell lines, with mean log GI50 of 0.62 and 0.59, respectively. The results showed promising in vitro antiproliferative action of the samples obtained from A. arenaria, with the best results for NCI/ADR-RES, HT29, and OVCAR-3, and TGI values ranging from 5.95 to 28.71 µg.mL-1, demonstrating that compounds of this class may be potential prototypes for the discovery of new therapeutic agents.


Assuntos
Humanos , Arenaria/química , Antineoplásicos , Plantas Medicinais , Técnicas In Vitro , Brasil , Extratos Vegetais , Cromatografia , Medicina Tradicional
8.
Pathogens ; 9(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231165

RESUMO

Citrus postbloom fruit drop, caused by Colletotrichum spp., is an important disease in the Americas. The pathogen infects citrus flowers, produces orange-brown lesions on petals, and may cause the abscission of young fruit. In diseased flowers, the calyxes remain attached to the peduncle after the young fruit drop. No anatomical and microanalysis studies have been conducted to determine whether calyx tissues can be infected by Colletotrichum spp. and why calyxes remain attached to the peduncle. Based on light microscopy, we demonstrate that the ovary abscission zone exhibits a separation region composed of layers of thickened lignified walled cells, indicating that abscission involves the disruption of cell walls. The first layers of the protective zone (PZ) are composed of densely packed cells with suberized walls produced by the wound meristem. Beneath the PZ, there is a compact mass of small cells that accumulate starch grains. X-ray fluorescence microanalysis (µ-XRF) confirmed the increased accumulation of calcium in the receptacle of the persistent calyxes compared to non-inoculated citrus flowers. Moreover, the peduncle pith and the receptacle exhibit hypertrophied cells with thick walls that may be related to calyx retention. Fungal structures are not observed inside the persistent calyx tissues.

9.
An Acad Bras Cienc ; 92(1): e20180472, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32187272

RESUMO

Resprouting is a functional trait in species which occur in fire-prone ecosystems. These plants can resprout from aerial buds and by recruiting belowground bud bank using carbohydrates allocated in roots as resource. In this study, we present morpho-anatomical features and chemical composition related to the resprouting potential of two species of Eugenia L. in an area of the Cerrado (Brazilian savanna) under regeneration, after the clear-cutting of Pinus sp. with the later burning of pine needles layer. We used standard histological techniques for belowground organs analysis and aerial buds protection degree. Belowground buds in layer from soil surface down to 10 depth were counted and the chemical analyses were performed on roots. In all aerial buds, there were relevant protection traits. The belowground organ is a sobole and the number of buds in its upper portion varied from 24 to 517 between individuals of both species. Phenolic compounds, flavonoids, starch and other carbohydrates were detected in roots. The protection of aerial buds, the large number of belowground buds and the storing and protective compounds may have favored the resprouting of the species in the area.


Assuntos
Germinação/fisiologia , Myrtaceae/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brasil , Incêndios , Myrtaceae/química , Myrtaceae/classificação , Raízes de Plantas/química
10.
Front Plant Sci ; 9: 698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875793

RESUMO

The plant cell wall is known to be the first barrier against plant pathogens. Detailed information about sugarcane cell wall-associated defense responses to infection by the causal agent of smut, Sporisorium scitamineum, is scarce. Herein, (immuno)histochemical analysis of two smut resistant and two susceptible sugarcane cultivars was conducted to understand host cell wall structural and compositional modifications in response to fungal infection. Results showed that the fungus grew on the surface and infected the outermost bud scale of both susceptible and resistant cultivars. The present findings also supported the existence of early (24 h after inoculation) and later (72-96 h after inoculation) inducible histopathological responses related to the cell wall modification in resistant cultivars. Lignin and phenolic compounds accumulated during early stages of infection. Later infection response was characterized by the formation of a protective barrier layer with lignin, cellulose and arabinoxylan in the cell walls. Overall, the results suggest possible induction of cell wall-modified responses in smut resistant cultivars to prevent initial entry of the fungus into the meristematic tissues.

11.
New Phytol ; 217(4): 1435-1448, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29334401

RESUMO

Despite long-time awareness of the importance of the location of buds in plant biology, research on belowground bud banks has been scant. Terms such as lignotuber, xylopodium and sobole, all referring to belowground bud-bearing structures, are used inconsistently in the literature. Because soil efficiently insulates meristems from the heat of fire, concealing buds below ground provides fitness benefits in fire-prone ecosystems. Thus, in these ecosystems, there is a remarkable diversity of bud-bearing structures. There are at least six locations where belowground buds are stored: roots, root crown, rhizomes, woody burls, fleshy swellings and belowground caudexes. These support many morphologically distinct organs. Given their history and function, these organs may be divided into three groups: those that originated in the early history of plants and that currently are widespread (bud-bearing roots and root crowns); those that also originated early and have spread mainly among ferns and monocots (nonwoody rhizomes and a wide range of fleshy underground swellings); and those that originated later in history and are strictly tied to fire-prone ecosystems (woody rhizomes, lignotubers and xylopodia). Recognizing the diversity of belowground bud banks is the starting point for understanding the many evolutionary pathways available for responding to severe recurrent disturbances.


Assuntos
Ecossistema , Incêndios , Plantas/anatomia & histologia , Evolução Biológica
12.
Front Plant Sci ; 8: 1675, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018470

RESUMO

Asian grapevine rust (Phakopsora euvitis) is a serious disease, which causes severe leaf necrosis and early plant defoliation. These symptoms are unusual for a strict biotrophic pathogen. This work was performed to quantify the effects of P. euvitis on photosynthesis, carbohydrates, and biomass accumulation of grapevine. The reduction in photosynthetic efficiency of the green leaf tissue surrounding the lesions was quantified using the virtual lesion concept (ß parameter). Gas exchange and responses of CO2 assimilation to increasing intercellular CO2 concentration were analyzed. Histopathological analyses and quantification of starch were also performed on diseased leaves. Biomass and carbohydrate accumulation were quantified in different organs of diseased and healthy plants. Rust reduced the photosynthetic rate, and ß was estimated at 5.78, indicating a large virtual lesion. Mesophyll conductance, maximum rubisco carboxylation rate, and regeneration of ribulose-1,5-bisphosphate dependent on electron transport rate were reduced, causing diffusive and biochemical limitations to photosynthesis. Hypertrophy, chloroplast degeneration of mesophyll cells, and starch accumulation in cells close to lesions were observed. Root carbohydrate concentration was reduced, even at low rust severity. Asian grapevine rust dramatically reduced photosynthesis and altered the dynamics of production and accumulation of carbohydrates, unlike strict biotrophic pathogens. The reduction in carbohydrate reserves in roots would support polyetic damage on grapevine, caused by a polycyclic disease.

13.
Food Chem ; 237: 1004-1011, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28763943

RESUMO

Brazil stands out as the largest producer of crystal sugar in the world, exporting much of its production to the soft drinks industry. However, the chemical composition of sugar may contain numerous compounds that promote the formation of acid beverage flocs (ABF), reducing product acceptance. This study aimed to identify the chemical composition of ABF using different analytical techniques. We could observe the ABF are formed by several chemical classes. Regarding the histochemical analysis, we observed the presence of cellular sugarcane tissues, which are not fully removed in sugarcane processing. Mineral compounds, such as silicon, were found in great amounts by the Scanning electron microscopy and energy dispersive system (SEM/EDS) analysis. The mass spectrometry, high resolution mass by Q-ToF analysis and MALDI-MS allowed identification of compounds, such as p-hydroxybenzaldehyde, vanillin, triacontanoic acid, hexadecanoic acid, octadecanoic acid and n-octacosanoic acid, in the ABF composition. These compounds are widely found in vegetable tissues, confirming that the ABF are formed by tiny particles of plant cells of sugar cane.


Assuntos
Bebidas , Saccharum , Benzaldeídos
14.
Ann Bot ; 119(5): 815-827, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27568298

RESUMO

Background and Aims: Sugarcane smut is caused by the fungus Sporisorium scitamineum (Ustilaginales/Ustilaginomycotina/Basidiomycota), which is responsible for losses in sugarcane production worldwide. Infected plants show a profound metabolic modification resulting in the development of a whip-shaped structure (sorus) composed of a mixture of plant tissues and fungal hyphae. Within this structure, ustilospores develop and disseminate the disease. Despite the importance of this disease, a detailed histopathological analysis of the plant-pathogen interaction is lacking. Methods: The whip-shaped sorus was investigated using light microscopy, scanning and transmission electron microscopy, histochemical tests and epifluorescence microscopy coupled with deconvolution. Key Results: Sorus growth is mediated by intercalary meristem activity at the base of the sorus, where the fungus causes partial host cell wall degradation and formation of intercellular spaces. Sporogenesis in S. scitamineum is thallic, with ustilospore initials in intercalary or terminal positions, and mostly restricted to the base of the sorus. Ustilospore maturation is centrifugal in relation to the ground parenchyma and occurs throughout the sorus median region. At the apex of the sorus, the fungus produces sterile cells and promotes host cell detachment. Hyphae are present throughout the central axis of the sorus (columella). The plant cell produces callose around the intracellular hyphae as well as inside the papillae at the infection site. Conclusions: The ontogeny of the whip-shaped sorus suggests that the fungus can cause the acropetal growth in the intercalary meristem. The sporogenesis of S. scitamineum was described in detail, demonstrating that the spores are formed exclusively at the base of the whip. Light was also shed on the nature of the sterile cells. The presence of the fungus alters the host cell wall composition, promotes its degradation and causes the release of some peripheral cells of the sorus. Finally, callose was observed around fungal hyphae in infected cells, suggesting that deposition of callose by the host may act as a structural response to fungal infection.


Assuntos
Doenças das Plantas/microbiologia , Saccharum/microbiologia , Ustilaginales/fisiologia , Interações Hospedeiro-Patógeno , Hifas/fisiologia , Hifas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Esporos Fúngicos/ultraestrutura , Ustilaginales/crescimento & desenvolvimento , Ustilaginales/ultraestrutura
15.
An Acad Bras Cienc ; 88(3 Suppl): 1899-1907, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27901194

RESUMO

Aldama arenaria and A. robusta are morphologically similar aromatic species that have seasonal development. The yield and chemical composition of essential oils from aerial and underground vegetative organs of these species were compared to verify the production of volatile metabolites in flowering and dormant phases of development and to identify if there are unique compounds for either species. The major compound in the essential oils from A. arenaria leaves was palustrol (16.22%) and for aerial stems was limonene (15.3%), whereas limonene (11.16%) and α-pinene (19.64%) were the major compounds for leaves and aerial stems from A. robusta, respectively. The major compound for the underground organs was α-pinene, in both species and phenological stages. High amounts of diterpenes were found especially for A. arenaria essential oils. Each analyzed species presented unique compounds, which can provide a characteristic chemical profile for both species helping to solve their taxonomic problems. This study characterized for the first time the yield and essential oil composition of A. arenaria and A. robusta, which have medicinal potential, and some of the compounds in their essential oils are unique to each one and may be useful in helping the correct identification of them.


Assuntos
Asteraceae/química , Óleos Voláteis/química , Óleos de Plantas/química , Estações do Ano , Monoterpenos Bicíclicos , Brasil , Cicloexenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Limoneno , Monoterpenos/análise , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Terpenos/análise
16.
Protoplasma ; 253(5): 1233-42, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26334287

RESUMO

Postbloom fruit drop (PFD) is an important disease caused by the fungus Colletotrichum acutatum. PFD is characterised by the formation of necrotic lesions on the petals and stigmas of flowers as well as premature abscission of the fruit in Citrus spp. We compare the ultrastructure of the epidermis of uninoculated Citrus sinensis petals with that of petals inoculated with the fungus to understand the changes that occur upon C. acutatum infection. Healthy petals have a cuticle with parallel striations covering the uniseriate epidermis. This pattern consists of vacuolated parietal cells whose cytoplasm contains mitochondria, plastids with an undeveloped endomembrane system and a slightly dense stroma, a poorly developed rough endoplasmic reticulum, polysomes, few lipid droplets, and a nucleus positioned near the inner periclinal wall. In damaged regions, the cytoplasm of some cells is densely packed with well-developed endoplasmic reticulum, a large number of hyperactive dictyosomes, numerous mitochondria, and many lipid droplets. The plastids have an electron-dense stroma, starch grains, and a large amount of electron-dense lipid droplets, which can be released into vacuoles or the endoplasmic reticulum. Multivesicular bodies and myelin bodies are frequently observed in the vacuole, cytoplasm, and periplasmic space. Vesicles migrate through the cell wall and are involved in the deposition of cuticular material. In the later stages of infection, there is deposition of new cuticle layers in plaques. The outer periclinal walls can be thick. These observations indicate that epidermal cells respond to the pathogen, resulting in cuticular and parietal changes, which may limit further infection.


Assuntos
Citrus sinensis/microbiologia , Colletotrichum/patogenicidade , Flores/ultraestrutura , Doenças das Plantas/microbiologia , Epiderme Vegetal/ultraestrutura , Núcleo Celular/ultraestrutura , Citoplasma/ultraestrutura , Retículo Endoplasmático/patologia , Flores/microbiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Epiderme Vegetal/microbiologia , Plastídeos
17.
AoB Plants ; 72014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25527474

RESUMO

It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.

18.
AoB Plants ; 72014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25535209

RESUMO

The constitutive characters of plants can be structural or biochemical and play an important role in their defence against pathogens. Citrus postbloom fruit drop (PFD) caused by Colletotrichum spp. is one of the most important fungal diseases of citrus. The pathogen infects the flowers, leading to premature fruit drop and reducing citrus production. However, flower buds smaller than 8 mm long are usually not infected by Colletotrichum spp. Thus, this study investigated whether there are constitutive mechanisms in flower buds related to Colletotrichum spp. infection. We studied flower buds that were 2, 3, 4, 8, 12 and 15 mm long and petals, after anthesis, of sweet orange 'Valência' using light and scanning electron microscopy and histochemistry. We evaluated the effect of volatile organic compounds (VOCs) in flowers (R-limonene and linalool) on the in vitro growth of Colletotrichum acutatum. We found that the arrangement of the epidermal papillae in the petal primordia, the occurrence of prismatic crystals and the distribution of oil glands are the main differences between buds smaller than 8 mm and buds 8-15 mm long. Osmophores at the tips of petals produced and accumulated phenols, terpenes and lipophilic compounds. Flower buds smaller than 8 mm long have constitutive structural and biochemical barriers to Colletotrichum spp. infection. In addition, this is the first time that osmophores have been reported in citrus. Our study shows that natural terpenes of Citrus flowers inhibit the fungal growth in vitro, highlighting the potential use of terpenes for the chemical control of PFD in citrus.

19.
Rev. bras. farmacogn ; 24(1): 73-79, Jan-Feb/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-710149

RESUMO

This study aimed to present information about the sarsaparilla sold in establishments in the state of São Paulo, Brazil, assess the genetic diversity of Smilax brasiliensis Spreng., Smilacaceae, and examine the growing conditions and productivity of five species of Smilax. The amount of sarsaparilla sold per month at most pharmacies was 0.4 kg on average. Herbal stores and markets sold averages of 9 kg and 8 kg per month, respectively. The weight of the underground biomass of S. fluminensis (188.3 g) is significantly higher than those of other species (28.3-79.6 g). The study demonstrated that high genetic diversity among the Smilax brasiliensis plants belonging to the CPQBA germplasm bank, which was confirmed by the results of the genotyping study that used a SSR marker on S. brasiliensis. The high consumption of sarsaparilla and the low yield of young plants cultivated from seeds with high genetic variability reinforce the need for further studies on the production of Smilax species.

20.
Rev. bras. farmacogn ; 23(4): 576-584, Aug. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-686630

RESUMO

This study aimed to describe the morphoanatomy of the aerial vegetative organs of seven Smilax species, used in Brazilian folk medicine. Samples of leaves and stems were fixed with FAA 50, embedded in historesin, sectioned on a rotary microtome, stained and mounted in synthetic resin. Cuticle ornamentation was analyzed with standard scanning electron microscopy. In the frontal view, the walls of the adaxial epidermis are straight in S. brasiliensis, S. cissoides, S. goyazana and sinuous in the other species. The walls of the epidermis on the abaxial surface are straight in S. brasiliensis, S. goyazana, S. rufescens, sinuous in S. campestris, S. fluminensis, S. oblongifolia, and wavy in S. cissoides. The stomata are paracytic in S. brasiliensis, S. goyazana, S. oblongifolia, and S. rufescens, anomocytic in S. cissoides, S. campestris; anisocytic and paracytic in S. fluminensis. The midrib has three vascular bundles that are individually wrapped by lignified cells in S. brasiliensis, S. cissoides, and S. fluminensis. In the other, the three vascular bundles are surrounded by a single lignified sheath. In the stems the vascular cylinder is surrounded by a sclerenchymatous ring with the exception of Smilax fluminensis, which has a starch sheath and internal layers of thin-walled cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA