Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 244(0): 391-410, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37415486

RESUMO

The study aims to understand the role of the transient bonding in the interplay between the structural and electronic changes in heteroleptic Cu(I) diimine diphosphine complexes. This is an emerging class of photosensitisers which absorb in the red region of the spectrum, whilst retaining a sufficiently long excited state lifetime. Here, the dynamics of these complexes are explored by transient absorption (TA) and time-resolved infrared (TRIR) spectroscopy, which reveal ultrafast intersystem crossing and structural distortion occurring. Two potential mechanisms affecting excited state decay in these complexes involve a transient formation of a solvent adduct, made possible by the opening up of the Cu coordination centre in the excited state due to structural distortion, and by a transient coordination of the O-atom of the phosphine ligand to the copper center. X-ray absorption studies of the ground electronic state have been conducted as a prerequisite for the upcoming X-ray spectroscopy studies which will directly determine structural dynamics. The potential for these complexes to be used in bimolecular applications is confirmed by a significant yield of singlet oxygen production.

2.
J Am Chem Soc ; 145(22): 12081-12092, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224437

RESUMO

A detailed understanding of the dynamics of photoinduced processes occurring in the electronic excited state is essential in informing the rational design of photoactive transition-metal complexes. Here, the rate of intersystem crossing in a Cr(III)-centered spin-flip emitter is directly determined through the use of ultrafast broadband fluorescence upconversion spectroscopy (FLUPS). In this contribution, we combine 1,2,3-triazole-based ligands with a Cr(III) center and report the solution-stable complex [Cr(btmp)2]3+ (btmp = 2,6-bis(4-phenyl-1,2,3-triazol-1-yl-methyl)pyridine) (13+), which displays near-infrared (NIR) luminescence at 760 nm (τ = 13.7 µs, ϕ = 0.1%) in fluid solution. The excited-state properties of 13+ are probed in detail through a combination of ultrafast transient absorption (TA) and femtosecond-to-picosecond FLUPS. Although TA spectroscopy allows us to observe the evolution of phosphorescent excited states within the doublet manifold, more significantly and for the first time for a complex of Cr(III), we utilize FLUPS to capture the short-lived fluorescence from initially populated quartet excited states immediately prior to the intersystem crossing process. The decay of fluorescence from the low-lying 4MC state therefore allows us to assign a value of (823 fs)-1 to the rate of intersystem crossing. Importantly, the sensitivity of FLUPS to only luminescent states allows us to disentangle the rate of intersystem crossing from other closely associated excited-state events, something which has not been possible in the spectroscopic studies previously reported for luminescent Cr(III) systems.

3.
Inorg Chem ; 59(15): 10430-10438, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32687331

RESUMO

Herein is presented a molecular dyad comprised of a [Ru(bpy)3]2+ photosensitizer and an anthraquinone (AQ) acceptor coupled by an ethynyl linker ([Ru(bpy)2(bpy-cc-AQ)]2+) in which activation/deactivation of photoinduced electron-transfer from the [Ru(bpy)3]2+ photosensitizer to the AQ acceptor is achieved and characterized as a function of the dielectric constant and hydrogen-bond donating ability of the solvent used. It is demonstrated that the rate of photoinduced electron-transfer can be modulated over several orders of magnitude (105-1011 s-1) by choice of solvent. Nanosecond transient absorption spectra are dominated by MLCT signals and exhibit identical decay kinetics to the corresponding emission signals. Ultrafast transient absorption and time-resolved infrared spectroscopies provide direct evidence for the formation of the charge-separated (CS) state and rapid (on the order of a few picoseconds) establishment of an excited-state pseudoequilibrium.

4.
IUCrJ ; 6(Pt 6): 1074-1085, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709063

RESUMO

High-throughput X-ray crystal structures of protein-ligand complexes are critical to pharmaceutical drug development. However, cryocooling of crystals and X-ray radiation damage may distort the observed ligand binding. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) can produce radiation-damage-free room-temperature structures. Ligand-binding studies using SFX have received only modest attention, partly owing to limited beamtime availability and the large quantity of sample that is required per structure determination. Here, a high-throughput approach to determine room-temperature damage-free structures with excellent sample and time efficiency is demonstrated, allowing complexes to be characterized rapidly and without prohibitive sample requirements. This yields high-quality difference density maps allowing unambiguous ligand placement. Crucially, it is demonstrated that ligands similar in size or smaller than those used in fragment-based drug design may be clearly identified in data sets obtained from <1000 diffraction images. This efficiency in both sample and XFEL beamtime opens the door to true high-throughput screening of protein-ligand complexes using SFX.

5.
IUCrJ ; 6(Pt 4): 543-551, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316799

RESUMO

An approach is demonstrated to obtain, in a sample- and time-efficient manner, multiple dose-resolved crystal structures from room-temperature protein microcrystals using identical fixed-target supports at both synchrotrons and X-ray free-electron lasers (XFELs). This approach allows direct comparison of dose-resolved serial synchrotron and damage-free XFEL serial femtosecond crystallography structures of radiation-sensitive proteins. Specifically, serial synchrotron structures of a heme peroxidase enzyme reveal that X-ray induced changes occur at far lower doses than those at which diffraction quality is compromised (the Garman limit), consistent with previous studies on the reduction of heme proteins by low X-ray doses. In these structures, a functionally relevant bond length is shown to vary rapidly as a function of absorbed dose, with all room-temperature synchrotron structures exhibiting linear deformation of the active site compared with the XFEL structure. It is demonstrated that extrapolation of dose-dependent synchrotron structures to zero dose can closely approximate the damage-free XFEL structure. This approach is widely applicable to any protein where the crystal structure is altered by the synchrotron X-ray beam and provides a solution to the urgent requirement to determine intact structures of such proteins in a high-throughput and accessible manner.

6.
Acta Crystallogr D Struct Biol ; 75(Pt 2): 151-159, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821704

RESUMO

The ability to determine high-quality, artefact-free structures is a challenge in micro-crystallography, and the rapid onset of radiation damage and requirement for a high-brilliance X-ray beam mean that a multi-crystal approach is essential. However, the combination of crystal-to-crystal variation and X-ray-induced changes can make the formation of a final complete data set challenging; this is particularly true in the case of metalloproteins, where X-ray-induced changes occur rapidly and at the active site. An approach is described that allows the resolution, separation and structure determination of crystal polymorphs, and the tracking of radiation damage in microcrystals. Within the microcrystal population of copper nitrite reductase, two polymorphs with different unit-cell sizes were successfully separated to determine two independent structures, and an X-ray-driven change between these polymorphs was followed. This was achieved through the determination of multiple serial structures from microcrystals using a high-throughput high-speed fixed-target approach coupled with robust data processing.


Assuntos
Achromobacter cycloclastes/enzimologia , Cristalografia por Raios X/instrumentação , Nitrito Redutases/química , Síncrotrons/instrumentação , Achromobacter cycloclastes/química , Animais , Cristalização/instrumentação , Cristalização/métodos , Cristalografia por Raios X/métodos , Coleta de Dados/instrumentação , Coleta de Dados/métodos , Desenho de Equipamento , Humanos , Metaloproteínas/química , Conformação Proteica/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA