Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679245

RESUMO

Plastic pollution has raised interest in biodegradable and sustainable plastic alternatives. For edible food packaging, seaweed biopolymers have been studied for their film-forming properties. In this study, packaging films were developed using the solvent casting technique from natural red seaweed (Kappaphycus alvarezii) and coffee waste product. The physico-chemical and thermal properties of seaweed/coffee biopolymer films was obtained using dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transmission irradiation (FT-IR), water contact angle measurement (WCA) and thermogravimetric analysis (TGA). The characterization study was carried out to improve the film's morphological, thermal, and mechanical properties. The average particle size of coffee waste was found to be between 1.106 and 1.281 µm, with a zeta potential value of -27.0 mV indicating the compound's strong negative charge. The SEM analysis revealed that the coffee filler was evenly dispersed in the polymer matrix, improving the film's structural properties. The FT-IR result shows that coffee waste was successfully incorporated over the film matrix with the presence of a N-H bond. The hydrophobic property of the film was enhanced with the incorporation of coffee filler, indicating increased water contact angle compared to the neat film. The tensile properties of the biopolymer film were significantly improved at 4 wt% coffee powder with optimum tensile strength (35.47 MPa) with the addition of coffee waste powder. The incorporation of coffee waste into the seaweed matrix increased the functional properties of the fabricated biopolymer film. Thus, seaweed/coffee biopolymer film has the potential to be used in food packaging and other applications.

2.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145881

RESUMO

This study develops bio-nano composite gelatin-based edible film (NEF) by combining nanogelatin, cellulose nanocrystal (CNC), and nanopropolis (NP) fillers to improve the resulting film characteristics. The NEF was characterized in terms of thickness, swelling, pH, water content, solubility, vapor and oxygen permeability, mechanical properties, heat resistance, morphology, transparency, and color. The results showed that the thickness and swelling increased significantly, whilst the pH did not significantly differ in each treatment. The water content and the water solubility also showed no significant changes with loadings of both fillers. At the same time, vapor and oxygen permeability decreased with addition of the fillers but were not significantly affected by the loading amounts. The heat resistance properties increased with the filler addition. Tensile strength and Young's modulus increased for the films loaded with >3% CNC. The elongation at break showed a significant difference together with transparency and color change. The greater the CNC concentration and NP loading were, the darker the resulting transparency and the color of the NEF. Overall results show a considerable improvement in the properties of the resulting NEFs with the incorporation of CNC and NP fillers.

3.
Polymers (Basel) ; 14(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35890696

RESUMO

Sodium silicate is a commonly used activator in geopolymer that is produced commercially. In this study, rice husk ash (RHA) from agricultural waste was used to synthesize sodium silicate as an activator for geopolymer cement. This white ash was applied for producing sodium silicate with different molarities (8, 10, and 12) and then used to synthesize fly ash-based geopolymer cement. Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) were applied to investigate the micro-characteristics of the geopolymerization products. Bulk density, water absorption, compressive strength, flexural strength, and fracture toughness were carried out to measure and evaluate the geopolymers with sodium silicate. The combination of 10 M NaOH with sodium silicate increased the compressive strength by 16.21% and the flexural strength and fracture toughness by 81.6%. However, sodium silicate combined with 12 M NaOH decreased compressive strengths by 13.23% and flexural strength and fracture toughness by 61.94%. The lowest water absorption value of 12.3% was obtained in a geopolymer paste using sodium silicate combined with 10 M NaOH, and the largest was 13.3% for sodium silicate combined with 8 M NaOH. The microstructure analysis showed the hydrated calcium alumina silicate gel (C-A-S-H) and the SEM image also revealed a compact geopolymer matrix. Thus, it can be concluded that sodium silicate from rice husk ash can be utilized as an activator or reactive material to produce geopolymer cement with a good geopolymer network.

4.
Polymers (Basel) ; 14(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893973

RESUMO

This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4-8%) and nanocrystalline cellulose (3-7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.

5.
Polymers (Basel) ; 14(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35567077

RESUMO

Membrane-based processes are a promising technology in water and wastewater treatments, to supply clean and secure water. However, during membrane filtration, biofouling phenomena severely hamper the performance, leading to permanent detrimental impacts. Moreover, regular chemical cleaning is ineffective in the long-run for overcoming biofouling, because it weakens the membrane structure. Therefore, the development of a membrane material with superior anti-biofouling performance is seen as an attractive option. Hydrophilic-anti-bacterial precursor polyethylene glycol-silver nanoparticles (PEG-AgNPs) were synthesized in this study, using a sol-gel method, to mitigate biofouling on the polyethersulfone (PES) membrane surface. The functionalization of the PEG-AgNP hybrid material on a PES membrane was achieved through a simple blending technique. The PES/PEG-AgNP membrane was manufactured via the non-solvent induced phase separation method. The anti-biofouling performance was experimentally measured as the flux recovery ratio (FRR) of the prepared membrane, before and after incubation in E. coli culture for 48 h. Nanomaterial characterization confirmed that the PEG-AgNPs had hydrophilic-anti-bacterial properties. The substantial improvements in membrane performance after adding PEG-AgNPs were evaluated in terms of the water flux and FRR after the membranes experienced biofouling. The results showed that the PEG-AgNPs significantly increased the water flux of the PES membrane, from 2.87 L·m-2·h-1 to 172.84 L·m-2·h-1. The anti-biofouling performance of the PES pristine membrane used as a benchmark showed only 1% FRR, due to severe biofouling. In contrast, the incorporation of PEG-AgNPs in the PES membrane decreased live bacteria by 98%. It enhanced the FRR of anti-biofouling up to 79%, higher than the PES/PEG and PES/Ag membranes.

6.
Polymers (Basel) ; 14(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35267828

RESUMO

The microbond test of natural fibers tends to produce scattered interfacial shear stress (IFSS) values. The sources of this scattering are known, but the roles they play in producing high IFSS scattering remain to be investigated. In this study, a numerical method was used to simulate microbond testing and to examine the experimental parameters in a microbond test of Typha angustifolia fiber/epoxy. Three parameters were considered: fiber diameter, fiber length embedded in the epoxy, and the distance between the vise and the specimen. The geometries were modeled and analyzed by ABAQUS software using its cohesive zone model features. There were two types of contact used in this analysis: tie constraint and surface-to-surface. The results showcased the roles of the following experimental parameters: a larger fiber diameter from a sample increased the IFSS value, a longer embedded length reduced the IFSS value, and a shorter vise-specimen distance increased the IFSS value. The IFSS scattering in the microbond test could have originated from the interaction between these parameters. Of the three parameters, only the vise-specimen distance was found to be able to be reasonably controlled. When the IFSS value was atypically large, fiber diameter and/or embedded length potentially drove the scattering. This study advises further compilation and classification of the role of each experimental parameter in modulating the IFSS value.

7.
Polymers (Basel) ; 14(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35012208

RESUMO

Potential use of tannic acid (TA) as an additive for fabrication of polyvinylidene difluoride (PVDF) membrane was investigated. The TA was introduced by blending into the dope solution with varying concentrations of 0, 1, 1.5, and 2 wt%. The prepared membranes were characterized and evaluated for filtration of humic acid (HA) solution. The stability of the membrane under harsh treatment was also evaluated by one-week exposure to acid and alkaline conditions. The results show that TA loadings enhanced the resulting membrane properties. It increased the bulk porosity, water uptake, and hydrophilicity, which translated into improved clean water flux from 15.4 L/m2.h for the pristine PVDF membrane up to 3.3× for the TA-modified membranes with the 2 wt% TA loading. The flux recovery ratio (FRR) of the TA-modified membranes (FRRs = 78-83%) was higher than the pristine one (FRR = 58.54%), with suitable chemical stability too. The improved antifouling property for the TA-modified membranes was attributed to their enhanced hydrophilicity thanks to improved morphology and residual TA in the membrane matric.

8.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883691

RESUMO

Pineapple crown leaf fiber (PCLF) is one of the major biomass wastes from pineapple processing plants. It consists mostly of carbohydrate polymers, such as cellulose, hemicellulose, and lignin. It can be further processed to form a more valuable and widely used nanocrystalline cellulose (NCC). This study investigates the effect of hydrolysis time on the properties of the produced NCC. The acid hydrolysis was conducted using 1 M of sulfuric acid at hydrolysis times of 1-3 h. The resulting NCCs were then characterized by their morphology, functional groups, crystallinity, thermal stability, elemental composition, and production yield. The results show that the NCC products had a rod-like particle structure and possessed a strong cellulose crystalline structure typically found in agricultural fiber-based cellulose. The highest NCC yield was obtained at 79.37% for one hour of hydrolysis. This NCC also displayed a higher decomposition temperature of 176.98 °C. The overall findings suggest that PCLF-derived NCC has attractive properties for a variety of applications.

9.
Polymers (Basel) ; 13(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34960829

RESUMO

Among the main bio-based polymer for food packaging materials, whey protein isolate (WPI) is one of the biopolymers that have excellent film-forming properties and are environmentally friendly. This study was performed to analyse the effect of various concentrations of bio-based nanocrystalline cellulose (NCC) extracted from pineapple crown leaf (PCL) on the properties of whey protein isolate (WPI) films using the solution casting technique. Six WPI films were fabricated with different loadings of NCC from 0 to 10 % w/v. The resulting films were characterised based on their mechanical, physical, chemical, and thermal properties. The results show that NCC loadings increased the thickness of the resulting films. The transparency of the films decreased at higher NCC loadings. The moisture content and moisture absorption of the films decreased with the presence of the NCC, being lower at higher NCC loadings. The water solubility of the films decreased from 92.2% for the pure WPI to 65.5% for the one containing 10 % w/v of NCC. The tensile strength of the films peaked at 7% NCC loading with the value of 5.1 MPa. Conversely, the trend of the elongation at break data was the opposite of the tensile strength. Moreover, the addition of NCC produced a slight effect of NCC in FTIR spectra of the WPI films using principal component analysis. NCC loading enhanced the thermal stability of the WPI films, as shown by an increase in the glass transition temperature at higher NCC loadings. Moreover, the morphology of the films turned rougher and more heterogeneous with small particle aggregates in the presence of the NCC. Overall, the addition of NCC enhanced the water barrier and mechanical properties of the WPI films by incorporating the PCL-based NCC as the filler.

10.
Polymers (Basel) ; 13(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833171

RESUMO

Membrane properties are highly affected by the composition of the polymer solutions that make up the membrane material and their influence in the filtration performance on the separation or purification process. This paper studies the effects of the addition of pluronic (Plu) and patchouli oil (PO) in a polyethersulfone (PES) solution on the membrane morphology, membrane hydrophilicity, and filtration performance in the pesticide removal compound in the water sample. Three types of membranes with the composition of PES, PES + Plu, and PES + Plu + patchouli oil were prepared through a polymer phase inversion technique in an aqueous solvent. The resulting membranes were then analyzed and tested for their mechanical properties, hydrophilicity, antimicrobial properties, and filtration performance (cross-flow ultrafiltration). The results show that all of the prepared membranes could reject 75% of the pesticide. The modification of the PES membrane with Plu was shown to increase the overall pore size by altering the pore morphology of the pristine PES, which eventually increased the permeation flux of the ultrafiltration process. Furthermore, patchouli oil added antimicrobial properties, potentially minimizing the biofilm formation on the membrane surface.

11.
Polymers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641103

RESUMO

Oil palm wood is the primary biomass waste produced from plantations, comprising up to 70% of the volume of trunks. It has been used in non-structural materials, such as plywood, lumber, and particleboard. However, one aspect has not been disclosed, namely, its use in thermal insulation materials. In this study, we investigated the thermal conductivity and the mechanical and physical properties of bio-insulation materials based on oil palm wood. The effects of hybridization and particle size on the properties of the panels were also evaluated. Oil palm wood and ramie were applied as reinforcements, and tapioca starch was applied as a bio-binder. Panels were prepared using a hot press at a temperature of 150 °C and constant pressure of 9.8 MPa. Thermal conductivity, bending strength, water absorption, dimensional stability, and thermogravimetric tests were performed to evaluate the properties of the panels. The results show that hybridization and particle size significantly affected the properties of the panels. The density and thermal conductivity of the panels were in the ranges of 0.66-0.79 g/cm3 and 0.067-0.154 W/mK, respectively. The least thermal conductivity, i.e., 0.067 W/mK, was obtained for the hybrid panels with coarse particles at density 0.66 g/cm3. The lowest water absorption (54.75%) and thickness swelling (18.18%) were found in the hybrid panels with fine particles. The observed mechanical properties were a bending strength of 11.49-18.15 MPa and a modulus of elasticity of 1864-3093 MPa. Thermogravimetric analysis showed that hybrid panels had better thermal stability than pure panels. Overall, the hybrid panels manufactured with a coarse particle size exhibited better thermal resistance and mechanical properties than did other panels. Our results show that oil palm wood wastes are a promising candidate for thermal insulation materials.

12.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209182

RESUMO

Nanosilica produced from physically-processed white rice husk ash agricultural waste can be incorporated into geopolymer cement-based materials to improve the mechanical and micro performance. This study aimed to investigate the effect of natural nanosilica on the mechanical properties and microstructure of geopolymer cement. It examined the mechanical behavior of geopolymer paste reinforced with 2, 3, and 4 wt% nanosilica. The tests of compressive strength, direct tensile strength, three bending tests, Scanning Electron Microscope-Energy Dispersive X-ray (SEM/EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR) were undertaken to evaluate the effect of nanosilica addition to the geopolymer paste. The addition of 2 wt% nanosilica in the geopolymer paste increased the compressive strength by 22%, flexural strength by 82%, and fracture toughness by 82% but decreased the direct tensile strength by 31%. The microstructure analysis using SEM, XRD, and FTIR showed the formation of calcium alumina-silicate hydrate (C-A-S-H) gel. The SEM images also revealed a compact and cohesive geopolymer matrix, indicating that the mechanical properties of geopolymers with 2 wt% nanosilica were improved. Thus, it is feasible for nanosilica to be used as a binder.

13.
Polymers (Basel) ; 12(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899138

RESUMO

Biofouling on the membrane surface leads to performance deficiencies in membrane filtration. In this study, the application of ginger extract as a bio-based additive to enhance membrane antibiofouling properties was investigated. The extract was dispersed in a dimethyl acetamide (DMAc) solvent together with polyvinylidene fluoride (PVDF) to enhance biofouling resistance of the resulting membrane due to its antibiotic property. The concentrations of the ginger extract in the dope solution were varied in the range of 0-0.1 wt %. The antibacterial property of the resulting membranes was assessed using the Kirby Bauer disc diffusion method. The results show an inhibition zone formed around the PVDF/ginger membrane against Escherichia coli and Staphylococcus aureus demonstrating the efficacy of the residual ginger extract in the membrane matrix to impose the antibiofouling property. The addition of the ginger extract also enhanced the hydrophilicity in the membrane surface by lowering the contact angle from 93° to 85°, which was in good agreement with the increase in the pure water flux of up to 62%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA