Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacogn Mag ; 13(Suppl 2): S334-S338, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28808402

RESUMO

BACKGROUND: Adiantum philippense (AP) is a pteridophyte that shows antihyperglycemic activity in vivo diabetic model, but the mechanism of action is unknown. OBJECTIVE: AP was found to play a pivotal role in minimizing the high blood glucose in alloxan-induced diabetic rats. Simultaneously, it was observed that it could maintain the normal lipid profile even in diabetic condition. To investigate its insulin-like activity along with its inhibitory role on adipocyte differentiation became the objective of our present study. MATERIALS AND METHODS: Glucose uptake potential of this fern was done in isolated pancreatic islets and inhibition of adipocyte differentiation was assessed in 3T3-L1 cell line. Before this, the cytotoxic concentration was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on L929 cell line. To determine its role in lipid metabolism, the oil droplets produced in adipocytes were stained with Oil 'O' red staining, and triglyceride levels of various drug treatments were measured spectrophotometrically. RESULTS: This fern extract was found to be actively utilizing glucose in the glucose uptake assay. Moreover, it was also involved in inhibiting differentiation of pro-adipocyte to adipocyte in the 3T3-L1 cell lines. The percentage inhibition as obtained from the absorbance showed that the ethanolic extract at the concentration of 200 µg/ml showed 32.48% inhibition. CONCLUSION: All the above-mentioned parameters when appraised indicated that this fern could be used as an alternative medicine in managing diabetes associated with obesity. SUMMARY: Adiantum phillippense (AP) is a pteridophyte that can work as antihyperglycemic agent by minimizing some adverse effects produced by diabetes. Diabetes produces oxidative stress, hampers normal glucose uptake in the pancreas, promotes adipocyte differentiation, and leads to obesity, and as a result, it generates catastrophic effect to the normal cells. The present study has shown that ethanolic extract of AP gives better protection rate against H2 O2-induced cytotoxicity, elicits insulinotropic activity in isolated mouse pancreatic glucose uptake assay. It also inhibits the preadipocytes to become mature adipocytes judged by morphology or lipid-specific Oil-Red-O staining of 3T3-L1 cell line. Abbreviations used: AP: Adiantum phillipense; MTT: (3-(4,5- Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide); BSA: Bovine serum albumin; FCS: Fetal calf serum; DMEM: Dulbecco's minimum essential media; RPMI: Roswell park memorial institute medium; DTZ: Dithizone; TG: Triglyceride; PPARγ: Peroxisome proliferator-activated receptor gamma; IBMX: 3-isobutyl-1-methylxanthine; nm: Nanometer; GI: Growth Inhibition; ELISA: Enzyme linked immunosorbent assay.

2.
J Ayurveda Integr Med ; 8(2): 73-81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28601354

RESUMO

BACKGROUND: The use of herbal plant extracts in wound healing is known through decades, but it is necessary to provide scientific data through reverse pharmacology. OBJECTIVE: The aim of the present study is to find the mechanism behind the healing of wounds using in vitro and in vivo assays. MATERIAL AND METHODS: The study was designed to determine proliferation and mobilization of fibroblast and keratinocytes at the site of injury, angiogenesis at the site of healing and reduction in oxidative stress while healing. In our earlier studies it was observed that herbal extract of Vitex negundo L. (VN), Emblica officinalis Gaertn (EO), and Tridax procumbens L. (TP) showed rapid regeneration of skin, wound contraction and collagen synthesis at the site of injury in excision wound model. In the present study the cell mobilization was monitored in the scratch assay on L929 fibroblastic cell line and HaCaT keratinocytes cell line under the influence of aqueous plant extracts and its formulation. This formulation was also assessed for its angiogenic potential using CAM assay. Study was carried out to probe synergistic effect of polyherbal formulation using excision model in rat. RESULTS: The formulation was found to contain high amount of flavonoids, tannins and phenols which facilitate wound healing. At 20 µg/ml concentration of formulation, significant increase in tertiary and quaternary vessels were observed due to angiogenic potential of formulation. Formulation at the concentration of 3 µg/ml and 5 µg/ml showed significant mobilization of keratinocytes and fibroblasts respectively at the site of injury. Polyherbal formulation showed rapid regeneration of skin and wound contraction. Biochemical parameters like hydroxyproline, hexosamine and collagen turnover was increased in test drug treated animals as compared to untreated, whereas antioxidants such as catalase and GSH were increased significantly and decreased amount of tissue MDA was observed. CONCLUSION: Polyherbal formulation prepared from the plant extracts accelerates wound healing process by proliferation and mobilization of fibroblast and keratinocytes, and angiogenesis at the site of injury. It also shows fast contraction of wound with its beneficial improvement in tissue biochemical and antioxidant parameters.

3.
Oxid Med Cell Longev ; 2017: 3876040, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28168009

RESUMO

Phyllanthus emblica L. (amla) has been used in Ayurveda as a potent rasayan for treatment of hepatic disorders. Most of the pharmacological studies, however, are largely focused on PE fruit, while the rest of the parts of PE, particularly, bark, remain underinvestigated. Therefore, we aimed to investigate the protective effect of the hydroalcoholic extract of Phyllanthus emblica bark (PEE) in ethanol-induced hepatotoxicity model in rats. Total phenolic, flavonoid, and tannin content and in vitro antioxidant activities were determined by using H2O2 scavenging and ABTS decolorization assays. Our results showed that PEE was rich in total phenols (99.523 ± 1.91 mg GAE/g), total flavonoids (389.33 ± 1.25 mg quercetin hydrate/g), and total tannins (310 ± 0.21 mg catechin/g), which clearly support its strong antioxidant potential. HPTLC-based quantitative analysis revealed the presence of the potent antioxidants gallic acid (25.05 mg/g) and ellagic acid (13.31 mg/g). Moreover, one-month PEE treatment (500 and 1000 mg/kg, p.o.) followed by 30-day 70% ethanol (10 mL/kg) administration showed hepatoprotection as evidenced by significant restoration of ALT (p < 0.01), AST (p < 0.001), ALP (p < 0.05), and TP (p < 0.001) and further confirmed by liver histopathology. PEE-mediated hepatoprotection could be due to its free radical scavenging and antioxidant activity that may be ascribed to its antioxidant components, namely, ellagic acid and gallic acid. Thus, the results of the present study support the therapeutic claims made in Ayurveda about Phyllanthus emblica.


Assuntos
Etanol/efeitos adversos , Frutas/química , Fígado/patologia , Phyllanthus emblica/química , Extratos Vegetais/química , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Silimarina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA