Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ear Hear ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439150

RESUMO

OBJECTIVES: Canalith repositioning procedures to treat benign paroxysmal positional vertigo are often applied following standardized criteria, without considering the possible anatomical singularities of the membranous labyrinth for each individual. As a result, certain patients may become refractory to the treatment due to significant deviations from the ideal membranous labyrinth, that was considered when the maneuvers were designed. This study aims to understand the dynamics of the endolymphatic fluid and otoconia, within the membranous labyrinth geometry, which may contribute to the ineffectiveness of the Epley maneuver. Simultaneously, the study seeks to explore methods to avoid or reduce treatment failure. DESIGN: We conducted a study on the Epley maneuver using numerical simulations based on a three-dimensional medical image reconstruction of the human left membranous labyrinth. A high-quality micro-computed tomography of a human temporal bone specimen was utilized for the image reconstruction, and a mathematical model for the endolymphatic fluid was developed and coupled with a spherical particle model representing otoconia inside the fluid. This allowed us to measure the position and time of each particle throughout all the steps of the maneuver, using equations that describe the physics behind benign paroxysmal positional vertigo. RESULTS: Numerical simulations of the standard Epley maneuver applied to this membranous labyrinth model yielded unsatisfactory results, as otoconia do not reach the frontside of the utricle, which in this study is used as the measure of success. The resting times between subsequent steps indicated that longer intervals are required for smaller otoconia. Using different angles of rotation can prevent otoconia from entering the superior semicircular canal or the posterior ampulla. Steps 3, 4, and 5 exhibited a heightened susceptibility to failure, as otoconia could be accidentally displaced into these regions. CONCLUSIONS: We demonstrate that modifying the Epley maneuver based on the numerical results obtained in the membranous labyrinth of the human specimen under study can have a significant effect on the success or failure of the treatment. The use of numerical simulations appears to be a useful tool for future canalith repositioning procedures that aim to personalize the treatment by modifying the rotation planes currently defined as the standard criteria.

2.
Comput Biol Med ; 163: 107225, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437361

RESUMO

The Head Impulse Test, the most widely accept test to assess the vestibular function, comprises rotations of the head based on idealized orientations of the semicircular canals, instead of their individual arrangement specific for each patient. In this study, we show how computational modelling can help personalize the diagnosis of vestibular diseases. Based on a micro-computed tomography reconstruction of the human membranous labyrinth and their simulation using Computational Fluid Dynamics and Fluid-Solid Interaction techniques, we evaluated the stimulus experienced by the six cristae ampullaris under different rotational conditions mimicking the Head Impulse Test. The results show that the maximum stimulation of the crista ampullaris occurs for directions of rotation that are more aligned with the orientation of the cupulae (average deviation from alignment of 4.7°, 9.8°, and 19.4° for the horizontal, posterior, and superior maxima, respectively) than with the planes of the semicircular canals (average deviation from alignment of 32.4°, 70.5°, and 67.8° for the horizontal, posterior, and superior maxima, respectively). A plausible explanation is that when rotations are applied with respect to the center of the head, the inertial forces acting directly over the cupula become dominant over the endolymphatic fluid forces generated in the semicircular canals. Our results indicate that it is necessary to consider cupulae orientation to ensure optimal conditions for testing the vestibular function.


Assuntos
Simulação por Computador , Teste do Impulso da Cabeça , Ductos Semicirculares , Humanos , Ductos Semicirculares/diagnóstico por imagem , Canais Semicirculares , Microtomografia por Raio-X , Doenças Vestibulares , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA