Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38682559

RESUMO

BACKGROUND: The maintenance of skeletal muscle plasticity upon changes in the environment, nutrient supply, and exercise depends on regulatory mechanisms that couple structural and metabolic adaptations. The mechanisms that interconnect both processes at the transcriptional level remain underexplored. Nr2f6, a nuclear receptor, regulates metabolism and cell differentiation in peripheral tissues. However, its role in the skeletal muscle is still elusive. Here, we aimed to investigate the effects of Nr2f6 modulation on muscle biology in vivo and in vitro. METHODS: Global RNA-seq was performed in Nr2f6 knockdown C2C12 myocytes (N = 4-5). Molecular and metabolic assays and proliferation experiments were performed using stable Nr2f6 knockdown and Nr2f6 overexpression C2C12 cell lines (N = 3-6). Nr2f6 content was evaluated in lipid overload models in vitro and in vivo (N = 3-6). In vivo experiments included Nr2f6 overexpression in mouse tibialis anterior muscle, followed by gene array transcriptomics and molecular assays (N = 4), ex vivo contractility experiments (N = 5), and histological analysis (N = 7). The conservation of Nr2f6 depletion effects was confirmed in primary skeletal muscle cells of humans and mice. RESULTS: Nr2f6 knockdown upregulated genes associated with muscle differentiation, metabolism, and contraction, while cell cycle-related genes were downregulated. In human skeletal muscle cells, Nr2f6 knockdown significantly increased the expression of myosin heavy chain genes (two-fold to three-fold) and siRNA-mediated depletion of Nr2f6 increased maximal C2C12 myocyte's lipid oxidative capacity by 75% and protected against lipid-induced cell death. Nr2f6 content decreased by 40% in lipid-overloaded myotubes and by 50% in the skeletal muscle of mice fed a high-fat diet. Nr2f6 overexpression in mice resulted in an atrophic and hypoplastic state, characterized by a significant reduction in muscle mass (15%) and myofibre content (18%), followed by an impairment (50%) in force production. These functional phenotypes were accompanied by the establishment of an inflammation-like molecular signature and a decrease in the expression of genes involved in muscle contractility and oxidative metabolism, which was associated with the repression of the uncoupling protein 3 (20%) and PGC-1α (30%) promoters activity following Nr2f6 overexpression in vitro. Additionally, Nr2f6 regulated core components of the cell division machinery, effectively decoupling muscle cell proliferation from differentiation. CONCLUSIONS: Our findings reveal a novel role for Nr2f6 as a molecular transducer that plays a crucial role in maintaining the balance between skeletal muscle contractile function and oxidative capacity. These results have significant implications for the development of potential therapeutic strategies for metabolic diseases and myopathies.

2.
Front Pharmacol ; 12: 720224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566644

RESUMO

Increased adiposity in perivascular adipose tissue (PVAT) has been related to vascular dysfunction. High-fat (HF) diet-induced obesity models are often used to analyze the translational impact of obesity, but differences in sex and Western diet type complicate comparisons between studies. The role of PVAT was investigated in small mesenteric arteries (SMAs) of male and female mice fed a HF or a HF plus high-sucrose (HF + HS) diet for 3 or 5 months and compared them to age/sex-matched mice fed a chow diet. Vascular responses of SMAs without (PVAT-) or with PVAT (PVAT+) were evaluated. HF and HF + HS diets increased body weight, adiposity, and fasting glucose and insulin levels without affecting blood pressure and circulating adiponectin levels in both sexes. HF or HF + HS diet impaired PVAT anticontractile effects in SMAs from females but not males. PVAT-mediated endothelial dysfunction in SMAs from female mice after 3 months of a HF + HS diet, whereas in males, this effect was observed only after 5 months of HF + HS diet. However, PVAT did not impact acetylcholine-induced relaxation in SMAs from both sexes fed HF diet. The findings suggest that the addition of sucrose to a HF diet accelerates PVAT dysfunction in both sexes. PVAT dysfunction in response to both diets was observed early in females compared to age-matched males suggesting a susceptibility of the female sex to PVAT-mediated vascular complications in the setting of obesity. The data illustrate the importance of the duration and composition of obesogenic diets for investigating sex-specific treatments and pharmacological targets for obesity-induced vascular complications.

3.
Mol Cell Endocrinol ; 535: 111379, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252492

RESUMO

The endoplasmic reticulum (ER) stress is one of the mechanisms related to decreased insulin secretion and beta cell death, contributing to the progress of type 2 diabetes mellitus (T2D). Thus, investigating agents that can influence this process would help prevent the development of T2D. Recently, the growth-hormone-releasing hormone (GHRH) action has been demonstrated in INS-1E cells, in which it increases cell proliferation and insulin secretion. As the effects of GHRH and its agonists have not been fully elucidated in the beta cell, we proposed to investigate them by evaluating the role of the GHRH agonist, MR-409, in cells under ER stress. Our results show that the agonist was unable to ameliorate or prevent ER stress. However, cells exposed to the agonist showed less oxidative stress and greater survival even under ER stress. The mechanisms by which GHRH agonist, MR-409, leads to these outcomes require further investigation.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indóis/efeitos adversos , Células Secretoras de Insulina/citologia , Sermorelina/análogos & derivados , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Hormônio do Crescimento/agonistas , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Sermorelina/farmacologia
4.
Metabolism ; 116: 154701, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33417894

RESUMO

BACKGROUND: Protein malnutrition in childhood predisposes individuals to vascular and pancreatic endocrine dysfunction, thus increasing the risk of diabetes and hypertension. Because taurine may reduce cardiometabolic risk, we hypothesized that taurine treatment has a beneficial effect on the pancreatic vasculature during protein restriction. METHODS AND RESULTS: Weaned mice were fed a normal or a low-protein diet and were treated with or without taurine for 3 months. The lieno-pancreatic artery (LPA) from low-protein diet-treated mice exhibited impaired endothelium-dependent relaxation to acetylcholine that was associated with decreased endothelium-derived hyperpolarization (EDH), hydrogen sulfide (H2S) production, and H2S-synthesizing CBS expression and impaired vasorelaxation to an H2S-donor, NaHS. These changes were prevented by taurine treatment. We compared the effects of taurine with the effects of the direct vasodilator hydralazine and found that both normalized blood pressure and the endothelial vasodilator function of the LPA in the mice fed a protein-restricted diet. However, only taurine restored the CBS expression in the LPA and insulin secretion in response to high glucose. The LPA supplies the pancreas and shares morphometry with the mesenteric resistance artery (MRA). However, in the MRA, low-protein diet-induced endothelial dysfunction is driven by impaired NOS-derived NO with no changes in H2S signaling. CONCLUSIONS: The results suggest that taurine protects against protein malnutrition-induced endothelial dysfunction in the LPA by upregulating the CBS-H2S pathway. Considering the importance of the pancreatic vasculature for endocrine islet activity, taurine may be a potential therapy for the vascular and metabolic dysfunction associated with malnutrition and comorbidities.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Desnutrição/complicações , Pâncreas/efeitos dos fármacos , Deficiência de Proteína/complicações , Taurina/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Proteínas Alimentares/administração & dosagem , Endotélio Vascular/fisiopatologia , Desnutrição/tratamento farmacológico , Desnutrição/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/irrigação sanguínea , Pâncreas/fisiopatologia , Deficiência de Proteína/tratamento farmacológico , Deficiência de Proteína/fisiopatologia , Vasodilatação/efeitos dos fármacos
5.
An Acad Bras Cienc ; 92(4): e20201382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33237150

RESUMO

D-pinitol is one of the major inositol found in plants and studies suggest its potential hypoglycemic and hypolipidemic actions in diabetic rodents. Here, we investigated the actions of D-pinitol on adiposity, and in lipid and glycemic homeostasis in monosodium glutamate (MSG)-obese mice. Swiss mice received daily subcutaneous injections of MSG [(4g/kg of body weight (BW)] or saline [1.25g/kg BW; control (CTL)] during their first five days of life. From 90-120 day-old, half of the MSG and CTL groups received 50 mg D-pinitol/kg BW/day (MPIN and CPIN groups) or vehicle (saline; MSG and CTL groups) by gavage. MSG mice displayed higher abdominal adiposity and hepatic triglycerides (TG) deposition, and increased hepatic expression of lipogenic genes (SREBP-1c, ACC-1 and FASN), but downregulation in AMPKα mRNA. MSG mice also exhibited hyperinsulinemia, islet hypersecretion and hypertrophy, glucose intolerance and insulin resistance. D-pinitol did not change adiposity, glucose intolerance, insulin resistance, but increased hepatic triglycerides (TG) content in MPIN mice, which was associated with increases in gene expressions of SREBP-1c and FASN, but reduction in AMPKα. Furthermore, D-pinitol enhanced insulin secretion in MPIN and CPIN groups. Therefore, D-pinitol enhanced glucose-induced insulin secretion, which may account to enhances hepatic lipogenesis and TG deposition in MPIN mice.


Assuntos
Metabolismo dos Lipídeos , Glutamato de Sódio , Animais , Glicemia , Inositol/análogos & derivados , Secreção de Insulina , Lipídeos , Camundongos , Camundongos Obesos
6.
Steroids ; 160: 108658, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442623

RESUMO

Research on the deleterious actions of bisphenol (BP)-A have focused on its effects on insulin secretion during pre/perinatal periods or adulthood. Estrogens also modulate endocrine pancreas physiology in females during aging; however, the effects of BPA on islet morphophysiology after menopause have not been investigated. We evaluated the effects of BPA exposure on glucose homeostasis and islet morphofunction in ovariectomized (OVX) mice fed on a high-fat diet (HFD). Adult Swiss female mice were underwent to bilateral ovariectomy, and with the confirmation of the establishment of surgical menopause, the females were then submitted, or not,to a normolipidic diet or HFD [control (CTL) and HFD groups, respectively] without or with 1 µg/mL BPA in their drinking water (CBPA and HBPA groups) for 90 days. HFD females displayed obesity, hyperglycemia, hyperinsulinemia, glucose intolerance and insulin resistance. BPA did not modulate HFD-induced obesity or body glucose impairments in HBPA females, and islets isolated from both the HFD and HBPA groups exhibited insulin hypersecretion. The HBPA islets, however, displayed enlarged islet cells and reduced proliferation, in association with the downregulation of mRNAs encoding PDX-1, NGN3 and CCND2 and upregulation of mRNAs encoding ER-ß, GPR30, TNF-α and IL-1ß in HBPA islets. BPA consumption in OVX mice impaired the islet-cell hyperplasia response to the HFD, partly mediated by increased expression of ER-ß and GPR30, which impaired the expression of major genes involved in islet-cell survival and functionality. Together with higher pro-inflammatory cytokines expression in the islet milieu, these alterations may accelerate ß-cell failure in postmenopause.


Assuntos
Compostos Benzidrílicos/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/cirurgia , Ovariectomia , Fenóis/farmacologia , Animais , Compostos Benzidrílicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Feminino , Teste de Tolerância a Glucose , Ilhotas Pancreáticas/metabolismo , Camundongos , Fenóis/administração & dosagem
7.
J Cell Physiol ; 234(5): 7019-7031, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30317580

RESUMO

Obesity predisposes to glucose intolerance and type 2 diabetes (T2D). This disease is often characterized by insulin resistance, changes in insulin clearance, and ß-cell dysfunction. However, studies indicate that, for T2D development, disruptions in glucagon physiology also occur. Herein, we investigated the involvement of glucagon in impaired glycemia control in monosodium glutamate (MSG)-obese mice. Male Swiss mice were subcutaneously injected daily, during the first 5 days after birth, with MSG (4 mg/g body weight [BW]) or saline (1.25 mg/g BW). At 90 days of age, MSG-obese mice were hyperglycemic, hyperinsulinemic, and hyperglucagonemic and had lost the capacity to increase their insulin/glucagon ratio when transitioning from the fasting to fed state, exacerbating hepatic glucose output. Furthermore, hepatic protein expressions of phosphorylated (p)-protein kinase A (PKA) and cAMP response element-binding protein (pCREB), and of phosphoenolpyruvate carboxykinase (PEPCK) enzyme were higher in fed MSG, before and after glucagon stimulation. Increased pPKA and phosphorylated hormone-sensitive lipase content were also observed in white fat of MSG. MSG islets hypersecreted glucagon in response to 11.1 and 0.5 mmol/L glucose, a phenomenon that persisted in the presence of insulin. Additionally, MSG α cells were hypertrophic displaying increased α-cell mass and immunoreactivity to phosphorylated mammalian target of rapamycin (pmTOR) protein. Therefore, severe glucose intolerance in MSG-obese mice was associated with increased hepatic glucose output, in association with hyperglucagonemia, caused by the refractory actions of glucose and insulin in α cells and via an effect that may be due to enhanced mTOR activation.


Assuntos
Glicemia/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/sangue , Intolerância à Glucose/sangue , Resistência à Insulina , Insulina/sangue , Obesidade/sangue , Glutamato de Sódio , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/sangue , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/fisiopatologia , Fígado/metabolismo , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/fisiopatologia , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
8.
Eur J Nutr ; 56(6): 2069-2080, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27317126

RESUMO

PURPOSE: L-alanine (Ala) and L-arginine (Arg) have been reported to regulate pancreatic ß-cell physiology and to prevent body fat accumulation in diet-induced obesity. Here, we assessed growth and adiposity parameters, glucose tolerance, insulin secretion and the expression of insulin and nutrient-regulated proteins in monosodium glutamate (MSG)-obese mice supplemented with either Ala or Arg. METHODS: Male newborn C57Bl/6 mice received a daily subcutaneous injection of MSG or saline solution (CTL group), during the first 6 days of life. From 30 to 90 days of age, MSG and CTL mice received or not 2.55 % Ala (CAla or MArg groups) or 1.51 % Arg-HCl (CArg or MArg groups) in their drinking water. RESULTS: Adult MSG mice displayed higher adiposity associated with lower phosphorylation of the adipogenic enzyme, ACC, in adipose tissue. Glucose intolerance in MSG mice was linked to lower insulin secretion and to lower expression of IRß in adipose tissue, as well as AS160 phosphorylation in skeletal muscle. Perigonadal fat depots were smaller in Ala and Arg mice, while retroperitoneal fat pads were decreased by Ala supplementation only. Both Ala and Arg improved fed-state glycemia as well as IRß and pAS160 content, but only Ala led to improved glucose tolerance and insulin secretion. Adipostatic signals were increased in MAla mice, as indicated by enhanced AMPK phosphorylation and pACC content in fat depots. CONCLUSIONS: Ala supplementation led to more pronounced metabolic improvements compared to Arg, possibly due to suppression of lipogenesis through activation of the AMPK/ACC pathway.


Assuntos
Adiposidade/efeitos dos fármacos , Alanina/farmacologia , Arginina/farmacologia , Suplementos Nutricionais , Intolerância à Glucose/tratamento farmacológico , Obesidade/tratamento farmacológico , Animais , Glicemia/metabolismo , Colesterol/sangue , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Homeostase/efeitos dos fármacos , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/induzido quimicamente , Fosforilação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Albumina Sérica/metabolismo , Glutamato de Sódio , Triglicerídeos/sangue
9.
Amino Acids ; 47(11): 2419-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26133737

RESUMO

Malnutrition programs the neuroendocrine axis by disruption of food-intake control, leading to obesity. Taurine (Tau) is neuroprotective and improves anorexigenic actions in the hypothalamus. We evaluated the hypothalamic gene-expression profile and food-intake control in protein-restricted mice submitted to a high-fat diet (HFD) and Tau supplementation. Mice were fed on a control (14 % protein-C) or a protein-restricted diet (6 % protein-R) for 6 weeks. Thereafter, mice received, or not, HFD for 8 weeks (CH and RH) with or without 5 % Tau supplementation (CHT and RHT). Protein restriction led to higher food intake, but calories were matched to controls. Excessive calorie intake occurred in HFD mice and this was prevented by Tau supplementation only in the CH group. Additionally, RH and CH mice developed hypothalamic leptin resistance, which was prevented by Tau. Global alterations in the expressions of genes involved in hypothalamic metabolism, cellular defense, apoptosis and endoplasmic reticulum stress pathways were induced by dietary manipulations and Tau treatment. The orexigenic peptides NPY and AgRP were increased by protein restriction and lowered by the HFD. The anorexigenic peptide Pomc was increased by HFD, and this was prevented by Tau only in CH mice. Thus, food intake was disrupted by dietary protein restriction and obesity. HFD-induced alterations were not enhanced by previous protein deficiency, but the some beneficial effects of Tau supplementation upon food intake were blunted by protein restriction. Tau effects upon feeding behavior control are complex and involve interactions with a vast gene network, preventing hypothalamic leptin resistance.


Assuntos
Gorduras na Dieta/farmacologia , Suplementos Nutricionais , Hipotálamo/metabolismo , Leptina/metabolismo , Deficiência de Proteína/mortalidade , Taurina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hipotálamo/patologia , Masculino , Camundongos , Deficiência de Proteína/patologia , Transdução de Sinais/efeitos dos fármacos
10.
Rev Bras Fisioter ; 15(1): 1-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21437517

RESUMO

BACKGROUND: Low level laser therapy (LLLT) has been used clinically in order to treat inflammation, where tissue and plasma prekallikrein have crucial importance. Plasma prekallikrein (PPK) is synthesized by the hepatocytes and secreted into the bloodstream, where it participates in the surface-dependent activation of blood coagulation, fibrinolysis, kinin generation and inflammation. Tissue prekallikrein is associated with important disease states (including cancer, inflammation, and neurodegeneration) and has been utilized or proposed as clinically important biomarker or therapeutic target of interest. OBJECTIVE: To evaluate if LLLT modulates tissue and plasma prekallikreins mRNA expression in the carrageenan-induced rat paw edema. METHODS: Experimental groups were assigned as followed: A(1) (Control-saline), A(2) (Carrageenan-only), A(3) (laser 660 nm only) and A(4) (Carrageenan + laser 660 nm). Edema was measured by a plethysmometer. Subplantar tissue was collected for the quantification of prekallikreins mRNA by Real time-Polymerase Chain Reaction. RESULTS: A significantly decrease in the edema was observed after laser irradiation. Expression of prekallikreins increased after carrageenan injection. Tissue and plasma prekallikrein mRNA expression significantly decreased after LLLT's 660 nm wavelength. CONCLUSION: These results suggest that expression of tissue and plasma prekallikreins is modulated by LLLT, which can be used in clinical practice due to its anti-inflammatory effects.


Assuntos
Edema/radioterapia , Terapia com Luz de Baixa Intensidade , Pré-Calicreína/biossíntese , Pré-Calicreína/genética , RNA Mensageiro/biossíntese , Animais , Carragenina/administração & dosagem , Modelos Animais de Doenças , Edema/sangue , Edema/induzido quimicamente , Extremidades , Masculino , RNA Mensageiro/sangue , Ratos , Ratos Wistar
11.
Braz. j. phys. ther. (Impr.) ; 15(1): 1-7, Jan.-Feb. 2011. graf
Artigo em Inglês | LILACS | ID: lil-582725

RESUMO

BACKGROND: Low level laser therapy (LLLT) has been used clinically in order to treat inflammation, where tissue and plasma prekallikrein have crucial importance. Plasma prekallikrein (PPK) is synthesized by the hepatocytes and secreted into the bloodstream, where it participates in the surface-dependent activation of blood coagulation, fibrinolysis, kinin generation and inflammation. Tissue prekallikrein is associated with important disease states (including cancer, inflammation, and neurodegeneration) and has been utilized or proposed as clinically important biomarker or therapeutic target of interest. OBJECTIVE: To evaluate if LLLT modulates tissue and plasma prekallikreins mRNA expression in the carrageenan-induced rat paw edema. METHODS: Experimental groups were assigned as followed: A1 (Control-saline), A2 (Carrageenan-only), A3 (laser 660nm only) and A4 (Carrageenan + laser 660nm). Edema was measured by a plethysmometer. Subplantar tissue was collected for the quantification of prekallikreins mRNA by Real time-Polymerase Chain Reaction. RESULTS: A significantly decrease in the edema was observed after laser irradiation. Expression of prekallikreins increased after carrageenan injection. Tissue and plasma prekallikrein mRNA expression significantly decreased after LLLT's 660nm wavelength. CONCLUSION: These results suggest that expression of tissue and plasma prekallikreins is modulated by LLLT, which can be used in clinical practice due to its anti-inflammatory effects.


CONTEXTUALIZAÇÃO: A laserterapia de baixa potência tem sido usada para o tratamento de processos inflamatórios diversos em que a calicreína tecidual e a plasmática possuem participação ativa. A pré-calicreína plasmática (PPK) é sintetizada pelos hepatócitos e secretada na corrente sanguínea, onde participa da ativação da coagulação, fibrinólise, geração de cininas e inflamação. A pré-calicreína tecidual está associada com importantes doenças (incluindo câncer, inflamação e neurodegeneração) e tem sido utilizada ou sugerida clinicamente como importante biomarcador ou alvo terapêutico. OBJETIVO: Avaliar se a laserterapia altera a expressão gênica da pré-calicreína tecidual e da plasmática no modelo de inflamação aguda induzida pela carragenina. MÉTODOS: Quarenta ratos foram separados em quatro grupos experimentais: A1 (controle), A2 (carragenina, apenas), A3 (laser 660nm, apenas) e A4 (Carragenina + laser 660nm). O edema foi medido por um pletismômetro. Tecido subplantar foi coletado para a quantificação de RNA mensageiro (RNAm) de pré-calicreínas tecidual e plasmática por PCR em tempo real. RESULTADOS: Observou-se uma diminuição significativa no volume de edema após irradiação com laser 660nm. A expressão de RNAm de pré-calicreínas tecidual e plasmática aumentou após a inoculação de carragenina, entretanto a expressão gênica das pré-calicreínas diminuiu significantemente após laserterapia de baixa potência de 660nm. CONCLUSÃO: Os resultados sugerem que a expressão de RNAm das pré-calicreínas tecidual e plasmática é modulada pela laserterapia de baixa potência, podendo ser alvo terapêutico para tratamento de processos inflamatórios.


Assuntos
Animais , Masculino , Ratos , Edema/radioterapia , Terapia com Luz de Baixa Intensidade , Pré-Calicreína/biossíntese , Pré-Calicreína/genética , RNA Mensageiro/biossíntese , Carragenina/administração & dosagem , Modelos Animais de Doenças , Extremidades , Edema/sangue , Edema/induzido quimicamente , Ratos Wistar , RNA Mensageiro/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA