Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 6, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38165478

RESUMO

Wound healing is a dynamic and complex process where infection prevention is essential. Chitosan, thanks to its bactericidal activity against gram-positive and gram-negative bacteria, as well as anti-inflammatory and hemostatic properties, is an excellent candidate to design dressings for difficult-to-heal wound treatment. The great advantage of this biopolymer is its capacity to be chemically modified, which allows for the production of various functional forms, depending on the needs and subsequent use. Moreover, chitosan can be an excellent polymer matrix for bacteriophage (phage) packing as a novel alternative/supportive antibacterial therapy approach. This study is focused on the preparation and characteristics of chitosan-based material in the form of a film with the addition of Pseudomonas lytic phages (KTN4, KT28, and LUZ19), which would exhibit antibacterial activity as a potential dressing that accelerates the wound healing. We investigated the method of producing a polymer based on microcrystalline chitosan (MKCh) to serve as the matrix for phage deposition. We described some important parameters such as average molar mass, swelling capacity, surface morphology, phage release profile, and antibacterial activity tested in the Pseudomonas aeruginosa bacterial model. The chitosan polysaccharide turned out to interact with phage particles immobilizing them within a material matrix. Nevertheless, with the high hydrophilicity and swelling features of the prepared material, the external solution of bacterial culture was absorbed and phages went in direct contact with bacteria causing their lysis in the polymer matrix. KEY POINTS: • A novel chitosan-based matrix with the addition of active phages was prepared • Phage interactions with the chitosan matrix were determined as electrostatic • Phages in the matrix work through direct contact with the bacterial cells.


Assuntos
Bacteriófagos , Quitosana , Fagos de Pseudomonas , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Polímeros
2.
Biomater Sci ; 11(19): 6421-6435, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37605901

RESUMO

The alarming rise of multi-drug resistant microorganisms has increased the need for new approaches through the development of innovative agents that are capable of attaching to the outer layers of bacteria and causing permanent damage by penetrating the bacterial outer membrane. The permeability (disruption) of the outer membrane of Gram-negative bacteria is now considered to be one of the main ways to overcome multidrug resistance in bacteria. Natural and synthetic permeabilizers such as AMPs and dendritic systems seem promising. However, due to their advantages in terms of biocompatibility, antimicrobial capacity, and wide possibilities for modification and synthesis, highly branched polymers and dendritic systems have gained much more interest in recent years. Various forms of arrangement, and structure of the skeleton, give dendritic systems versatile applications, especially the possibility of attaching other ligands to their surface. This review will focus on the mechanisms used by different types of dendritic polymers, and their complexes with macromolecules to enhance their antimicrobial effect, and to permeabilize the bacterial outer membrane. In addition, future challenges and potential prospects are illustrated in the hope of accelerating the advancement of nanomedicine in the fight against resistant pathogens.


Assuntos
Antibacterianos , Membrana Externa Bacteriana , Antibacterianos/farmacologia , Antibacterianos/química , Resistência a Múltiplos Medicamentos , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
3.
Appl Microbiol Biotechnol ; 107(2-3): 897-913, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36625915

RESUMO

The implementation of non-traditional antibacterials is currently one of the most intensively explored areas of modern medical and biological sciences. One of the most promising alternative strategies to combat bacterial infections is the application of lytic phages combined with established and new antibacterials. The presented study investigates the potential of agarose-based biocomposites containing lytic Pseudomonas phages (KT28, KTN4, and LUZ19), cupric ions (Cu2+), strawberry furanone (HDMF), and gentamicin (GE) as antibacterials and anti-virulent compounds for novel wound dressings. Phages (KT28, KTN4, LUZ19, and triple-phage cocktail) alone and in combination with a triple-chemical mixture (Cu + GE + HDMF) when applied as the liquid formulation caused a significant bacterial count reduction and biofilm production inhibition of clinical P. aeruginosa strains. The immobilization in the agarose scaffold significantly impaired the bioavailability and diffusion of phage particles, depending on virion morphology and targeted receptor specificity. The antibacterial potential of chemicals was also reduced by the agarose scaffold. Moreover, the Cu + GE + HDMF mixture impaired the lytic activity of phages depending on viral particles' susceptibility to cupric ion toxicity. Therefore, three administration types were tested and the optimal turned out to be the one separating antibacterials both physically and temporally. Taken together, the additive effect of phages combined with chemicals makes biocomposite a good solution for designing new wound dressings. Nevertheless, the phage utilization should involve an application of aqueous cocktails directly onto the wound, followed by chemicals immobilized in hydrogel dressings which allow for taking advantage of the antibacterial and anti-virulent effects of all components. KEY POINTS: • The immobilization in the agarose impairs the bioavailability of phage particles and the Cu + GE + HDMF mixture. • The cupric ions are toxic to phages and are sequestrated on phage particles and agarose matrix. • The elaborated TIME-SHIFT administration effectively separates antibacterials both physically and temporally.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Fagos de Pseudomonas , Humanos , Bacteriófagos/fisiologia , Pseudomonas aeruginosa , Sefarose , Fagos de Pseudomonas/fisiologia , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia
4.
Phys Rev E ; 106(4-1): 044138, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36397549

RESUMO

Anomalous diffusion of an antibiotic (colistin) in a system consisting of packed gel (alginate) beads immersed in water is studied experimentally and theoretically. The experimental studies are performed using the interferometric method of measuring concentration profiles of a diffusing substance. We use the g-subdiffusion equation with the fractional Caputo time derivative with respect to another function g to describe the process. The function g and relevant parameters define anomalous diffusion. We show that experimentally measured time evolution of the amount of antibiotic released from the system determines the function g. The process can be interpreted as subdiffusion in which the subdiffusion parameter (exponent) α decreases over time. The g-subdiffusion equation, which is more general than the "ordinary" fractional subdiffusion equation, can be widely used in various fields of science to model diffusion in a system in which parameters, and even a type of diffusion, evolve over time. We postulate that diffusion in a system composed of channels and a matrix can be described by the g-subdiffusion equation, just like diffusion in a system of packed gel beads placed in water.

5.
Colloids Surf B Biointerfaces ; 217: 112652, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772353

RESUMO

Biomedical applications of gold nanoparticles (AuNPs) may be limited by their toxicological effects. Although surface-modified AuNPs can induce apoptosis, less is known about whether they can induce other types of cell death. Pyroptosis, an inflammatory type of programmed cell death, can be induced in immune cells, especially macrophages, by bacterial endotoxins. Therefore, in this study, dendronized AuNPs were combined with bacterial lipopolysaccharides (LPSs) as the main stimulators of pro-inflammatory responses to test the induction of pyroptosis in THP-1 myeloid cell line. These AuNPs induced caspase-1 activity (3-4 times more compared to control) and enhanced the release of interleukin (IL)-18 and IL-1ß without inducing gasdermin D cleavage and related pore formation. The production of pro-inflammatory cytokines occurred mainly visible during LPS treatment, although their secretion was observed only after administration of dendronized AuNPs (release of IL-1ß to supernatant up to 80 pg/mL). These findings suggest that dendronized AuNPs can induce pyroptosis-like inflammatory mechanisms and that these mechanisms are enhanced in the presence of bacterial LPS. The intensity of this effect was dependent on AuNP surface modification. These results shed new light on the cytotoxicity of metal NPs, including immune responses, indicating that surface modifications play crucial roles in their nanotoxicological effects.


Assuntos
Lipopolissacarídeos , Nanopartículas Metálicas , Citocinas/metabolismo , Ouro/metabolismo , Ouro/farmacologia , Interleucina-1beta , Lipopolissacarídeos/farmacologia , Monócitos , Piroptose
6.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163794

RESUMO

The search for new microbicide compounds is of an urgent need, especially against difficult-to-eradicate biofilm-forming bacteria. One attractive option is the application of cationic multivalent dendrimers as antibacterials and also as carriers of active molecules. These compounds require an adequate hydrophilic/hydrophobic structural balance to maximize the effect. Herein, we evaluated the antimicrobial activity of cationic carbosilane (CBS) dendrimers unmodified or modified with polyethylene glycol (PEG) units, against planktonic and biofilm-forming P. aeruginosa culture. Our study revealed that the presence of PEG destabilized the hydrophilic/hydrophobic balance but reduced the antibacterial activity measured by microbiological cultivation methods, laser interferometry and fluorescence microscopy. On the other hand, the activity can be improved by the combination of the CBS dendrimers with endolysin, a bacteriophage-encoded peptidoglycan hydrolase. This enzyme applied in the absence of the cationic CBS dendrimers is ineffective against Gram-negative bacteria because of the protective outer membrane shield. However, the endolysin-CBS dendrimer mixture enables the penetration through the membrane and then deterioration of the peptidoglycan layer, providing a synergic antimicrobial effect.


Assuntos
Antibacterianos/farmacologia , Endopeptidases/farmacologia , Polietilenoglicóis/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Silanos/farmacologia , Antibacterianos/química , Bacteriófagos/metabolismo , Biofilmes/efeitos dos fármacos , Dendrímeros , Composição de Medicamentos , Sinergismo Farmacológico , Interferometria , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Fluorescência , Plâncton/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Silanos/química
7.
Bioorg Chem ; 116: 105327, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34507233

RESUMO

Interactions between transport proteins and compounds with therapeutic potential are pharmacologically important. In this study, using fluorescence, circular dichroism (CD), and small-angle X-ray Scattering (SAXS), we investigated the interaction between bovine serum albumin (BSA) and a copper(II)-1-allylimidazole complex with potential anti-cancer properties. The results revealed dynamic fluorescence quenching of the model carrier protein BSA by the copper(II) complex. The enthalpy change (ΔH), free energy (ΔG), and entropy change (ΔS) were calculated to be 108 kJ/mol, -16.47 kJ/mol, and 419 J/mol K, respectively, according to the Van't Hoff equation. The reaction was an endothermic and spontaneous process, and hydrophobic interactions played a major role in binding. The results indicate a much lower affinity (Kb âˆ¼ 102-103) for the metal complex compared with similar compounds (Kb âˆ¼ 103-105). CD showed that the studied copper(II) complex does not change the secondary structure of the protein, while SAXS showed that the this compound may attach to the protein surface and stimulate interactions between proteins. The results suggest that the copper(II) complex with 1-allylimidazole binds weakly to BSA, leading to aggregation of albumin in solution, thereby altering its pharmacokinetic properties. The findings are pertinent to drug design.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Cobre/química , Imidazóis/química , Soroalbumina Bovina/química , Animais , Sítios de Ligação , Bovinos , Dicroísmo Circular , Estrutura Molecular , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Difração de Raios X
8.
Viruses ; 13(7)2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34372538

RESUMO

Bacterial surface structures of a proteinic nature and glycoconjugates contribute to biofilm formation and provide shields to host defense mechanisms (e.g., the complement system and phagocytosis). A loss or alteration of these molecules, leading to phage resistance, could result in fewer virulent bacteria. In this study, we evaluate the biology and phenotype changes in Pseudomonas aeruginosa PAO1 phage-resistant clones, which emerge in phage-treated biofilms. We characterize these clones for phage-typing patterns, antibiotic resistance, biofilm formation, pathogenicity, and interactions with the innate immune system. Another important question that we address is whether phage-resistant mutants are also generated incidentally, despite the phage treatment-selective pressure, as the natural adaptation of the living biofilm population. It is found that the application of different phages targeting a particular receptor selects similar phage resistance patterns. Nevertheless, this results in a dramatic increase in the population heterogeneity, giving over a dozen phage-typing patterns, compared to one of the untreated PAO1 sessile forms. We also confirm the hypothesis that "phage-resistant bacteria are more susceptible to antibiotics and host-clearance mechanisms by the immune system". These findings support phage application in therapy, although the overall statement that phage treatment selects the less virulent bacterial population should be further verified using a bigger collection of clinical strains.


Assuntos
Resistência Microbiana a Medicamentos/genética , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia , Antibacterianos/farmacologia , Bacteriófagos/genética , Biofilmes/crescimento & desenvolvimento , Resistência Microbiana a Medicamentos/fisiologia , Humanos , Terapia por Fagos/métodos , Fagocitose/genética , Fenótipo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulência
9.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071406

RESUMO

Coralyne is a synthetic analog of berberine related to protoberberine-isoquinoline alkaloids. Isoquinoline derivatives and analogs are renowned as potent radiosensitizers with potential medical application. In the present study, we investigated the effect of coralyne on the cell death, cytoskeletal changes and cell cycle progression of irradiated A549 cells. A clonogenic assay revealed that coralyne pretreatment decreased the viability of A549 cells in a time- and dose-dependent manner. Moreover, exposure to coralyne and ionizing radiation (IR) markedly altered the filamentous actin cytoskeletal architecture and integrin-ß binding sites of A549 cells. Treatment with 1-25 µM coralyne in combination with 2 Gy of IR significantly reduced the percentage of cells in G2/M phase compared with 2 Gy IR alone. These results indicate that coralyne is a potent radiosensitizing agent that may find an application in medicine.


Assuntos
Alcaloides de Berberina/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Células A549 , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Humanos , Microscopia Confocal , Radiação Ionizante , Radiossensibilizantes/farmacologia
10.
Entropy (Basel) ; 23(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802897

RESUMO

The study of drugs diffusion through different biological membranes constitutes an essential step in the development of new pharmaceuticals. In this study, the method based on the monolayer cell culture of CHO-K1 cells has been developed in order to emulate the epithelial cells barrier in permeability studies by laser interferometry. Laser interferometry was employed for the experimental analysis of nickel(II) and cobalt(II) complexes with 1-allylimidazole or their chlorides' diffusion through eukaryotic cell monolayers. The amount (mol) of nickel(II) and cobalt(II) chlorides transported through the monolayer was greater than that of metals complexed with 1-allylimidazole by 4.34-fold and 1.45-fold, respectively, after 60 min. Thus, laser interferometry can be used for the quantitative analysis of the transport of compounds through eukaryotic cell monolayers, and the resulting parameters can be used to formulate a mathematical description of this process.

11.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803717

RESUMO

New fluconazole-loaded, 6-Anhydro-α-l-Galacto-ß-d-Galactan hydrogels incorporated with nanohydroxyapatite were prepared and their physicochemical features (XRD, X-ray Diffraction; SEM-EDS, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy; ATR-FTIR, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy), fluconazole release profiles and enzymatic degradation were determined. Antifungal activity of pure fluconazole was tested using Candida species (C. albicans, C. tropicalis, C. glabarata), Cryptococcus species (C. neoformans, C. gatti) and Rhodotorula species (R. mucilaginosa, R. rubra) reference strains and clinical isolates. Standard microdilution method was applied, and fluconazole concentrations of 2-250 µg/mL were tested. Moreover, biofilm production ability of tested isolates was tested on the polystyrene surface at 28 and 37 ± 0.5 °C and measured after crystal violet staining. Strains with the highest biofilm production ability were chosen for further analysis. Confocal microscopy photographs were taken after live/dead staining of fungal suspensions incubated with tested hydrogels (with and without fluconazole). Performed analyses confirmed that polymeric hydrogels are excellent drug carriers and, when fluconazole-loaded, they may be applied as the prevention of chronic wounds fungal infection.


Assuntos
Antifúngicos/farmacologia , Durapatita/química , Fluconazol/farmacologia , Galactanos/química , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Doença Crônica , Fungos/efeitos dos fármacos , Hidrogéis/química , Cinética , Testes de Sensibilidade Microbiana , Muramidase/metabolismo , Nanopartículas/ultraestrutura , Plâncton/efeitos dos fármacos , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Difração de Raios X
12.
PLoS One ; 15(12): e0243003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270697

RESUMO

We study the experimentally measured ciprofloxacin antibiotic diffusion through a gel-like artificial sputum medium (ASM) mimicking physiological conditions typical for a cystic fibrosis layer, in which regions occupied by Pseudomonas aeruginosa bacteria are present. To quantify the antibiotic diffusion dynamics we employ a phenomenological model using a subdiffusion-absorption equation with a fractional time derivative. This effective equation describes molecular diffusion in a medium structured akin Thompson's plumpudding model; here the 'pudding' background represents the ASM and the 'plums' represent the bacterial biofilm. The pudding is a subdiffusion barrier for antibiotic molecules that can affect bacteria found in plums. For the experimental study we use an interferometric method to determine the time evolution of the amount of antibiotic that has diffused through the biofilm. The theoretical model shows that this function is qualitatively different depending on whether or not absorption of the antibiotic in the biofilm occurs. We show that the process can be divided into three successive stages: (1) only antibiotic subdiffusion with constant biofilm parameters, (2) subdiffusion and absorption of antibiotic molecules with variable biofilm transport parameters, (3) subdiffusion and absorption in the medium but the biofilm parameters are constant again. Stage 2 is interpreted as the appearance of an intensive defence build-up of bacteria against the action of the antibiotic, and in the stage 3 it is likely that the bacteria have been inactivated. Times at which stages change are determined from the experimentally obtained temporal evolution of the amount of antibiotic that has diffused through the ASM with bacteria. Our analysis shows good agreement between experimental and theoretical results and is consistent with the biologically expected biofilm response. We show that an experimental method to study the temporal evolution of the amount of a substance that has diffused through a biofilm is useful in studying the processes occurring in a biofilm. We also show that the complicated biological process of antibiotic diffusion in a biofilm can be described by a fractional subdiffusion-absorption equation with subdiffusion and absorption parameters that change over time.


Assuntos
Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/microbiologia , Biofilmes/efeitos dos fármacos , Difusão , Modelos Biológicos , Escarro/química
13.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751963

RESUMO

Metal complexes are currently potential therapeutic compounds. The acquisition of resistance by cancer cells or the effective elimination of cancer-affected cells necessitates a constant search for chemical compounds with specific biological activities. One alternative option is the transition metal complexes having potential as antitumor agents. Here, we present the current knowledge about the application of transition metal complexes bearing nickel(II), cobalt(II), copper(II), ruthenium(III), and ruthenium(IV). The cytotoxic properties of the above complexes causing apoptosis, autophagy, DNA damage, and cell cycle inhibition are described in this review.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/química , Compostos Organometálicos/farmacologia , Compostos de Platina/farmacologia , Compostos de Rutênio/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Cobalto/química , Complexos de Coordenação/química , DNA/química , Dano ao DNA/efeitos dos fármacos , Humanos , Níquel/química , Compostos Organometálicos/química , Compostos de Platina/química , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Compostos de Rutênio/química
14.
Biopolymers ; 111(9): e23386, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32544981

RESUMO

Cationic dendrimers are considered one of the best drug transporters in the body. However, in order to improve their biocompatibility, modification of them is required to reduce toxicity. In this way, many dendrimers may lose their original properties, for example, anticancer. To improve biocompatibility of dendrimers, it is possible to complex them with albumin, as is done very often in drug delivery. However, the interaction of dendrimers with albumin can lead to protein structure disruption or no complexation at all. Therefore, the investigation of the interaction between cationic poly-(propylene imine) dendrimers and polyethylene glycol (PEG)-albumin by fluorescence, circular dichroism, small angle X-ray scattering (SAXS), and transmission electron microscopy was carried out. Results show that cationic dendrimers bind to PEGylated albumin at PEG and albumin surfaces. The obtained results for 5k-PEG indicate a preferential binding of the dendrimers to PEG. For 20k-PEG binding of dendrimers to PEG and protein could induce a collapse of the PEG chain onto the protein surface. This opens up new possibilities to the use of PEGylated albumin as a platform to carry dendrimers without changing the albumin structure and improve the pharmacokinetic properties of dendrimers without further modification.


Assuntos
Dendrímeros/química , Nanopartículas/química , Polietilenoglicóis/química , Polipropilenos/química , Soroalbumina Bovina/química , Animais , Transporte Biológico , Bovinos , Dendrímeros/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/metabolismo , Polietilenoglicóis/metabolismo , Polipropilenos/metabolismo , Espalhamento a Baixo Ângulo , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Difração de Raios X
15.
Front Microbiol ; 10: 2771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866964

RESUMO

Antimicrobial proteins, like lysozymes produced by animals or bacteriophage lysins, enable the degradation of bacterial peptidoglycan (PG) and, consequently, lead to bacterial cell lysis. However, the activity of those enzymes is not satisfactory against gram-negative bacteria because of the presence of an outer membrane (OM) barrier. Lytic enzymes can therefore be combined with membrane-disrupting agents, such as dendritic silver nanoparticles. Nevertheless, a lipopolysaccharide (LPS), especially the smooth type, could be the main hindrance for highly charged nanoparticles to get direct access to the bacterial OM and to help lytic enzymes to reach their target PG. Herein, we have investigated the interactions of PEGylated carbosilane dendritic nanoparticles with P. aeruginosa 010 LPS in the presence of lysozymes and KP27 endolysin to find out the main aspects of the OM destabilization process. Our results showed that PEGylated dendronized AgNPs overcame the LPS barrier and enhanced the antibacterial effect of endolysin more efficiently than unPEGylated nanoparticles.

16.
Viruses ; 11(12)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771160

RESUMO

The emergence of phage-resistant mutants is a key aspect of lytic phages-bacteria interaction and the main driver for the co-evolution between both organisms. Here, we analyze the impact of PA5oct jumbo phage treatment on planktonic/cell line associated and sessile P. aeruginosa population. Besides its broad-spectrum activity and efficient bacteria reduction in both airway surface liquid (ASL) model, and biofilm matrix degradation, PA5oct appears to persist in most of phage-resistant clones. Indeed, a high percentage of resistance (20/30 clones) to PA5oct is accompanied by the presence of phage DNA within bacterial culture. Moreover, the maintenance of this phage in the bacterial population correlates with reduced P. aeruginosa virulence, coupled with a sensitization to innate immune mechanisms, and a significantly reduced growth rate. We observed rather unusual consequences of PA5oct infection causing an increased inflammatory response of monocytes to P. aeruginosa. This phenomenon, combined with the loss or modification of the phage receptor, makes most of the phage-resistant clones significantly less pathogenic in in vivo model. These findings provide new insights into the general knowledge of giant phages biology and the impact of their application in phage therapy.


Assuntos
Biofilmes/crescimento & desenvolvimento , Plâncton/microbiologia , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/virologia , Mutação , Terapia por Fagos , Fenótipo , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Virulência
17.
Bioorg Chem ; 91: 103121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310881

RESUMO

Nowadays, the researchers make a big effort to find new alternatives to overcome bacterial drug resistance. One option is the application of bacteriophage endolysins enable to degrade peptidoglycan (PG) what in consequence leads to bacterial cell lysis. In this study we examine phage KP27 endolysin mixed with poly(propyleneimine) dendrimers to evaluate an antimicrobial effect against Pseudomonas aeruginosa. Polycationic compounds destabilize bacterial outer membrane (OM) helping endolysins to gain access to PG. We found out that not only bacterial lipopolysaccharide (LPS) is the main hindrance for highly charged cationic dendrimers to disrupt OM and make endolysin reaching the target but also the dendrimer surface modification. The reduction of a positive charge and concentration in maltose poly(propyleneimine) dendrimers significantly increased an antibacterial effect of endolysin. The application of recombinant lysins against Gram-negative bacteria is one of the future therapy options, thus OM permeabilizers such as cationic dendrimers may be of high interest to be combined with PG-degrading enzymes.


Assuntos
Antibacterianos/farmacologia , Dendrímeros/farmacologia , Endopeptidases/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Bacteriófagos/enzimologia , Dendrímeros/química , Sinergismo Farmacológico , Endopeptidases/química , Klebsiella/virologia , Maltose/análogos & derivados , Testes de Sensibilidade Microbiana , Estabilidade Proteica
18.
Sci Rep ; 9(1): 9777, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278366

RESUMO

The physicochemical properties of metal complexes determine their potential applications as antitumor agents. In this study, the antitumor properties of mononuclear cobalt(II) and copper(II) coordination compounds (stoichiometry: [Co(iaa)2(H2O)2]·H2O (iaa = imidazole-4-acetate anion), [Co(1-allim)6](NO3)2 (1-allim = 1-allylimidazole), [Cu(iaa)2H2O] and [Cu(1-allim)4(NO3)2]) and their ligands have been evaluated on human lung carcinoma A549 cells and normal bronchial BEAS-2B cells. Designing the chemical structure of new antitumor agents the possible interactions with macromolecules such as DNA or proteins should be take into account. PCR gene tlr4 product served as DNA model, whereas lysozyme and phage-derived endolysin (both peptidoglycan degrading enzymes) were applied as protein/enzyme model. The interactions were analysed using PCR-HRM and circular dichroism, FT-IR, spectrophotometry, respectively. Additionally, the antimicrobial properties of the complexes at a non-cytotoxic concentration were analyzed against S. aureus, E. coli, P. aeruginosa and C. albicans strains. The results obtained in this study showed the selective cytotoxicity of metal complexes, mainly [Cu(1-allim)4(NO3)2] towards tumor cells. From all tested compounds, only [Co(iaa)2(H2O)2].H2O non-covalently interacts with DNA. Cu(II) and Co(II) complexes did not affect the secondary conformation of tested proteins but modified the hydrolytic activity of enzymes (lysozyme and endolysin). Moreover, only [Co(iaa)2(H2O)2].H2O exhibited the antifungal properties. In conclusion, Co(II) and Cu(II) metal complexes bearing two imidazole-4-acetate ligands seemed to be promising antitumor and antifungal agents for future drug design and application.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Cobalto , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre , Imidazóis , Linhagem Celular Tumoral , Cobalto/química , Cobre/química , DNA/química , DNA/metabolismo , Fungos/efeitos dos fármacos , Humanos , Imidazóis/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Estrutura Molecular
19.
Virulence ; 10(1): 260-276, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30938219

RESUMO

Antibiotic therapy and its consequences in bacterial and human aspects are widely investigated. Despite this, the emergence of new multidrug resistant bacteria is still a current problem. The scope of our work included the observation of changes among uropathogenic Escherichia coli strains after the treatment with a subinhibitory concentration of different antibiotics. The sensitive strains with or without virulence factors were incubated with amoxicillin, ciprofloxacin, gentamycin, or tobramycin. After each passage, the E. coli derivatives were compared to their wild types based on their susceptibility profiles, virulence genes, biofilm formations and the fingerprint profiles of PCR products amplified with using the (N)(6)(CGG)(4) primer. It turned out that antibiotics caused significant changes in the repertoire of bacterial virulence and biofilm formation, corresponding to acquired cross-resistance. The genomic changes among the studied bacteria were reflected in the changed profiles of the CGG-PCR products. In conclusion, the inappropriate application of antibiotics may cause a rapid rise of Multidrug Resistant (MDR) strains and give bacteria a chance to modulate their own pathogenicity. This phenomenon has been easily observed among uropathogenic E. coli strains and it is one of the main reasons for recurrent infections of the urinary tract.


Assuntos
Aminoglicosídeos/farmacologia , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Infecções Urinárias/microbiologia , Virulência , Fatores de Virulência/genética
20.
Eur Biophys J ; 48(1): 111-118, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30483831

RESUMO

The aim of this study was to analyze the correlation between past bacterial infections and the type and chemical composition of urinary stones experienced by human patients. Bacteria have been recognized to contribute to urinary stones; however, the role of uropathogens in the development of specific stones has not been extensively investigated. The detection of past bacterial infection (eleven different bacterial species) in urinary stones from 83 patients was made on a DNA level using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) and correlated with the chemical composition of urinary stones measured using X-ray powder diffraction (XPRD) technique and their elemental composition by total reflection X-ray fluorescence (TXRF). In this study, two scenarios of urinary stones formation mediated by Proteus sp. or Escherichia coli are presented. The first one is associated with Proteus spp. which dominated in 84% of infectious urinary stones and is strongly correlated with struvite and calcium phosphate, in whose matrix additionally strontium, phosphorus, potassium, nickel and zinc are detected. The formation of these stones is closely correlated with urease activity. The second scenario for urinary stone mineralization is associated with E. coli identified in weddellite stones, in which matrix iron was detected. In conclusion, the statistical correlations of bacterial infections with crystalline and elemental composition showed that in mixed bacterial infections, one scenario dominated and excluded the second one.


Assuntos
Infecções Bacterianas/complicações , Eletroforese em Gel de Gradiente Desnaturante , Reação em Cadeia da Polimerase , Espectrometria por Raios X , Cálculos Urinários/química , Cálculos Urinários/complicações , Difração de Raios X , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA