Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JIMD Rep ; 65(2): 116-123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444580

RESUMO

Mucopolysaccharidoses (MPS) screening is tedious and still performed by analysis of total glycosaminoglycans (GAG) using 1,9-dimethylmethylene blue (DMB) photometric assay, although false positive and negative tests have been reported. Analysis of differentiated GAGs have been pursued classically by gel electrophoresis or more recently by quantitative LC-MS assays. Secondary elevations of GAGs have been reported in urinary tract infections (UTI). In this manuscript, we describe the diagnostic accuracy of urinary GAG measurements by LC-MS for MPS typing in 68 untreated MPS and mucolipidosis (ML) patients, 183 controls and 153 UTI samples. We report age-dependent reference values and cut-offs for chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS) and keratan sulfate (KS) and specific GAG ratios. The use of HS/DS ratio in combination to GAG concentrations normalized to creatinine improves the diagnostic accuracy in MPS type I, II, VI and VII. In total 15 samples classified to the wrong MPS type could be correctly assigned using HS/DS ratio. Increased KS/HS ratio in addition to increased KS improves discrimination of MPS type IV by excluding false positives. Some samples of UTI patients showed elevation of specific GAGs, mainly CS, KS and KS/HS ratio and could be misclassified as MPS type IV. Finally, DMB photometric assay performed in MPS and ML samples reveal four false negative tests (sensitivity of 94%). In conclusion, specific GAG ratios in complement to quantitative GAG values obtained by LC-MS enhance discrimination of MPS types. Exclusion of patients with UTI improve diagnostic accuracy in MPS IV but not in other types.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36989769

RESUMO

Surfactant degradation in biopharmaceuticals has recently gained significant attention in the pharmaceutical industry. Specifically, hydrolytic degradation of polysorbates, leading to the release of free fatty acids potentially forming visible particles, is a key theme in technical development. To address this emerging topic, we present the development of a fully automated liquid-chromatography single quad mass detector method for the quantification of free fatty acids in biopharmaceuticals. For the first time, we have quantified the longer chain fatty acid degradation products of polysorbate, palmitic and stearic acid, allowing reliable detection and early critical insights for process improvements. This high-throughput method was validated underlining its robust performance in an interlaboratory trial as well as high flexibility allowing different robotic platforms and preparation techniques. The combination of automated sample preparation, separation by liquid chromatography and single quad mass detection makes the validated fatty acid mass spectrometry assay ready for routine use in a regulated environment.


Assuntos
Produtos Biológicos , Polissorbatos , Polissorbatos/análise , Ácidos Graxos , Ácidos Graxos não Esterificados/análise , Hidrólise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA