Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Neurochem Res ; 47(1): 190-203, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33765249

RESUMO

The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission and plays a key role in regulating nociceptive signal progression. The cholinergic system acting through muscarinic acetylcholine receptors (mAChRs) also mediates important regulations of nociceptive transmission being the M2 subtype the most abundantly expressed in the spinal cord. Here we studied the effect of M2 mAChRs stimulation on GlyT2 function co-expressed in a heterologous system with negligible levels of muscarinic receptor activity. We found GlyT2 is down-regulated by carbachol in a calcium-dependent manner. Different components involved in cell calcium homeostasis were analysed to establish a role in the mechanism of GlyT2 inhibition. GlyT2 down-regulation by carbachol was increased by thapsigargin and reduced by internal store depletion, although calcium release from endoplasmic reticulum or mitochondria had a minor role on GlyT2 inhibition. Our results are consistent with a GlyT2 sensitivity to intracellular calcium mobilized by M2 mAChRs in the subcortical area of the plasma membrane. A crucial role of the plasma membrane sodium calcium exchanger NCX is proposed.


Assuntos
Cálcio , Proteínas da Membrana Plasmática de Transporte de Glicina , Neurônios , Receptor Muscarínico M2 , Animais , Cálcio/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptor Muscarínico M2/metabolismo
2.
Commun Biol ; 4(1): 1197, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663888

RESUMO

The identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas de Peixe-Zebra/genética , Animais , Embrião não Mamífero , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas Hedgehog , Ratos , Ratos Wistar , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
ACS Chem Neurosci ; 12(11): 1860-1872, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34003005

RESUMO

The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission by controlling the extracellular concentration of synaptic glycine and the supply of neurotransmitter to the presynaptic terminal. Spinal cord glycinergic neurons present in the dorsal horn diminish their activity in pathological pain conditions and behave as gate keepers of the touch-pain circuitry. The pharmacological blockade of GlyT2 reduces the progression of the painful signal to rostral areas of the central nervous system by increasing glycine extracellular levels, so it has analgesic action. O-[(2-benzyloxyphenyl-3-fluorophenyl)methyl]-l-serine (ALX1393) and N-[[1-(dimethylamino)cyclopentyl]methyl]-3,5-dimethoxy-4-(phenylmethoxy)benzamide (ORG25543) are two selective GlyT2 inhibitors with nanomolar affinity for the transporter and analgesic effects in pain animal models, although with deficiencies which preclude further clinical development. In this report, we performed a comparative ligand docking of ALX1393 and ORG25543 on a validated GlyT2 structural model including all ligand sites constructed by homology with the crystallized dopamine transporter from Drosophila melanogaster. Molecular dynamics simulations and energy analysis of the complex and functional analysis of a series of point mutants permitted to determine the structural determinants of ALX1393 and ORG25543 discrimination by GlyT2. The ligands establish simultaneous contacts with residues present in transmembrane domains 1, 3, 6, and 8 and block the transporter in outward-facing conformation and hence inhibit glycine transport. In addition, differential interactions of ALX1393 with the cation bound at Na1 site and ORG25543 with TM10 define the differential sites of the inhibitors and explain some of their individual features. Structural information about the interactions with GlyT2 may provide useful tools for new drug discovery.


Assuntos
Drosophila melanogaster , Proteínas da Membrana Plasmática de Transporte de Glicina , Animais , Benzamidas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Neurônios , Serina/análogos & derivados
4.
Neuropharmacology ; 189: 108543, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794243

RESUMO

Hyperekplexia is a rare sensorimotor syndrome characterized by pathological startle reflex in response to unexpected trivial stimuli for which there is no specific treatment. Neonates suffer from hypertonia and are at high risk of sudden death due to apnea episodes. Mutations in the human SLC6A5 gene encoding the neuronal glycine transporter GlyT2 may disrupt the inhibitory glycinergic neurotransmission and cause a presynaptic form of the disease. The phenotype of missense mutations giving rise to protein misfolding but maintaining residual activity could be rescued by facilitating folding or intracellular trafficking. In this report, we characterized the trafficking properties of two mutants associated with hyperekplexia (A277T and Y707C, rat numbering). Transporter molecules were partially retained in the endoplasmic reticulum showing increased interaction with the endoplasmic reticulum chaperone calnexin. One transporter variant had export difficulties and increased ubiquitination levels, suggestive of enhanced endoplasmic reticulum-associated degradation. However, the two mutant transporters were amenable to correction by calnexin overexpression. Within the search for compounds capable of rescuing mutant phenotypes, we found that the arachidonic acid derivative N-arachidonoyl glycine can rescue the trafficking defects of the two variants in heterologous cells and rat brain cortical neurons. N-arachidonoyl glycine improves the endoplasmic reticulum output by reducing the interaction transporter/calnexin, increasing membrane expression and improving transport activity in a comparable way as the well-established chemical chaperone 4-phenyl-butyrate. This work identifies N-arachidonoyl glycine as a promising compound with potential for hyperekplexia therapy.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Variação Genética/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Glicina/análogos & derivados , Hiperecplexia/genética , Mutação de Sentido Incorreto/fisiologia , Neurônios/fisiologia , Animais , Ácidos Araquidônicos/farmacologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Feminino , Variação Genética/efeitos dos fármacos , Glicina/farmacologia , Glicina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Hiperecplexia/tratamento farmacológico , Hiperecplexia/metabolismo , Mutação de Sentido Incorreto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Wistar
5.
Endocr Pract ; 26(6): 604-611, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32160049

RESUMO

Objective: Treatment of hyperglycemia with insulin is associated with increased risk of hypoglycemia in type 2 diabetes mellitus (T2DM) patients receiving total parenteral nutrition (TPN). The aim of this study was to determine the predictors of hypoglycemia in hospitalized T2DM patients receiving TPN. Methods: Post hoc analysis of the INSUPAR study, which is a prospective, open-label, multicenter clinical trial of adult inpatients with T2DM in a noncritical setting with indication for TPN. Results: The study included 161 patients; 31 patients (19.3%) had hypoglycemic events, but none of them was severe. In univariate analysis, hypoglycemia was significantly associated with the presence of diabetes with end-organ damage, duration of diabetes, use of insulin prior to admission, glycemic variability (GV), belonging to the glargine insulin group in the INSUPAR trial, mean daily grams of lipids in TPN, mean insulin per 10 grams of carbohydrates, duration of TPN, and increase in urea during TPN. Multiple logistic regression analysis showed that the presence of diabetes with end-organ damage, GV, use of glargine insulin, and TPN duration were risk factors for hypoglycemia. Conclusion: The presence of T2DM with end-organ damage complications, longer TPN duration, belonging to the glargine insulin group, and greater GV are factors associated with the risk of hypoglycemia in diabetic noncritically ill inpatients with parenteral nutrition. Abbreviations: ADA = American Diabetes Association; BMI = body mass index; CV% = coefficient of variation; DM = diabetes mellitus; GI = glargine insulin; GV = glycemic variability; ICU = intensive care unit; RI = regular insulin; T2DM = type 2 diabetes mellitus; TPN = total parenteral nutrition.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Glicemia , Humanos , Hipoglicemiantes , Pacientes Internados , Insulina , Insulina Glargina , Nutrição Parenteral Total , Estudos Prospectivos , Fatores de Risco
6.
Clin Nutr ; 39(2): 388-394, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30930133

RESUMO

BACKGROUND: There is no established insulin regimen in T2DM patients receiving parenteral nutrition. AIMS: To compare the effectiveness (metabolic control) and safety of two insulin regimens in patients with diabetes receiving TPN. DESIGN: Prospective, open-label, multicenter, clinical trial on adult inpatients with type 2 diabetes on a non-critical setting with indication for TPN. Patients were randomized on one of these two regimens: 100% of RI on TPN or 50% of Regular insulin added to TPN bag and 50% subcutaneous GI. Data were analyzed according to intention-to-treat principle. RESULTS: 81 patients were on RI and 80 on GI. No differences were observed in neither average total daily dose of insulin, programmed or correction, nor in capillary mean blood glucose during TPN infusion (165.3 ± 35.4 in RI vs 172.5 ± 43.6 mg/dL in GI; p = 0.25). Mean capillary glucose was significantly lower in the GI group within two days after TPN interruption (160.3 ± 45.1 in RI vs 141.7 ± 43.8 mg/dL in GI; p = 0.024). The percentage of capillary glucose above 180 mg/dL was similar in both groups. The rate of capillary glucose ≤70 mg/dL, the number of hypoglycemic episodes per 100 days of TPN, and the percentage of patients with non-severe hypoglycemia were significantly higher on GI group. No severe hypoglycemia was detected. No differences were observed in length of stay, infectious complications, or hospital mortality. CONCLUSION: Effectiveness of both regimens was similar. GI group achieved better metabolic control after TPN interruption but non-severe hypoglycemia rate was higher in the GI group. CLINICAL TRIAL REGISTRY: This trial is registered at clinicaltrials.gov as NCT02706119.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina Glargina/uso terapêutico , Insulina/uso terapêutico , Nutrição Parenteral Total/métodos , Idoso , Terapia Combinada , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Injeções Subcutâneas , Insulina Glargina/administração & dosagem , Masculino , Estudos Prospectivos , Espanha , Resultado do Tratamento
7.
Neurochem Int ; 123: 95-100, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29859229

RESUMO

Hyperekplexia or startle disease is a dysfunction of inhibitory glycinergic neurotransmission characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. Although rare, this disorder can have serious consequences, including sudden infant death. One of the most frequent causes of hyperekplexia are mutations in the SLC6A5 gene, encoding the neuronal glycine transporter 2 (GlyT2), a key component of inhibitory glycinergic presynapses involved in synaptic glycine recycling though sodium and chloride-dependent co-transport. Most GlyT2 mutations detected so far are recessive, but two dominant missense mutations have been described. The detailed analysis of these mutations has revealed structural cues on the quaternary structure of GlyT2, and opens the possibility that novel selective pharmacochaperones have potential therapeutic effects in hyperekplexia.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Hiperecplexia/genética , Mutação/genética , Animais , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Hiperecplexia/metabolismo , Neurônios/metabolismo , Receptores de Glicina/genética , Transmissão Sináptica/genética
8.
Front Mol Neurosci ; 11: 347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319354

RESUMO

Neurotransmitter removal from glycine-mediated synapses relies on two sodium-driven high-affinity plasma membrane GlyTs that control neurotransmitter availability. Mostly glial GlyT1 is the main regulator of glycine synaptic levels, whereas neuronal GlyT2 promotes the recycling of synaptic glycine and supplies neurotransmitter for presynaptic vesicle refilling. The GlyTs differ in sodium:glycine symport stoichiometry, showing GlyT1 a 2:1 and GlyT2 a 3:1 sodium:glycine coupling. Sodium binds to the GlyTs at two conserved Na+ sites: Na1 and Na2. The location of GlyT2 Na3 site remains unknown, although Glu650 has been involved in the coordination. Here, we have used comparative MD simulations of a GlyT2 model constructed by homology to the crystalized DAT from Drosophila melanogaster by placing the Na3 ion at two different locations. By combination of in silico and experimental data obtained by biochemical and electrophysiological analysis of GlyTs mutants, we provide evidences suggesting the GlyT2 third sodium ion is held by Glu-250 and Glu-650, within a region with robust allosteric properties involved in cation-specific sensitivity. Substitution of Glu650 in GlyT2 by the corresponding methionine in GlyT1 reduced the charge-to-flux ratio to the level of GlyT1 without producing transport uncoupling. Chloride dependence of glycine transport was almost abolished in this GlyT2 mutant but simultaneous substitution of Glu250 and Glu650 by neutral amino acids rescued chloride sensitivity, suggesting that protonation/deprotonation of Glu250 substitutes chloride function. The differential behavior of equivalent GlyT1 mutations sustains a GlyT2-specific allosteric coupling between the putative Na3 site and the chloride site.

9.
Adv Neurobiol ; 16: 13-32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828604

RESUMO

Glycine, besides exerting essential metabolic functions, is an important inhibitory neurotransmitter in caudal areas of the central nervous system and also a positive neuromodulator at excitatory glutamate-mediated synapses. Glial cells provide metabolic support to neurons and modulate synaptic activity. Six transporters belonging to three solute carrier families (SLC6, SLC38, and SLC7) are capable of transporting glycine across the glial plasma membrane. The unique glial glycine-selective transporter GlyT1 (SLC6) is the main regulator of synaptic glycine concentrations, assisted by the neuronal GlyT2. The five additional glycine transporters ATB0,+, SNAT1, SNAT2, SNAT5, and LAT2 display broad amino acid specificity and have differential contributions to glial glycine transport. Glial glycine transporters are divergent in sequence but share a similar architecture displaying the 5 + 5 inverted fold originally characterized in the leucine transporter LeuT. The availability of protein crystals solved at high resolution for prokaryotic and, more recently, eukaryotic homologues of this superfamily has advanced significantly our understanding of the mechanism of glycine transport.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Glicina/metabolismo , Neuroglia/metabolismo , Animais , Humanos
10.
Neuropharmacology ; 125: 99-116, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28734869

RESUMO

Glycinergic inhibitory neurons of the spinal dorsal horn exert critical control over the conduction of nociceptive signals to higher brain areas. The neuronal glycine transporter 2 (GlyT2) is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft and its activity modulates intra and extracellular glycine concentrations. In this report we show that the stimulation of P2X purinergic receptors with ßγ-methylene adenosine 5'-triphosphate induces the up-regulation of GlyT2 transport activity by increasing total and plasma membrane expression and reducing transporter ubiquitination. We identified the receptor subtypes involved by combining pharmacological approaches, siRNA-mediated protein knockdown, and dorsal root ganglion cell enrichment in brainstem and spinal cord primary cultures. Up-regulation of GlyT2 required the combined stimulation of homomeric P2X3 and P2X2 receptors or heteromeric P2X2/3 receptors. We measured the spontaneous glycinergic currents, glycine release and GlyT2 uptake concurrently in response to P2X receptor agonists, and showed that the impact of P2X3 receptor activation on glycinergic neurotransmission involves the modulation of GlyT2 expression or activity. The recognized pro-nociceptive action of P2X3 receptors suggests that the fine-tuning of GlyT2 activity may have consequences in nociceptive signal conduction.


Assuntos
Membrana Celular/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Glicina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/metabolismo , Agonistas do Receptor Purinérgico P2X/farmacologia , Ratos Wistar , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
11.
Neuropharmacology ; 89: 245-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25301276

RESUMO

Inhibitory glycinergic neurotransmission is terminated by the specific glycine transporters GlyT1 and GlyT2 which actively reuptake glycine from the synaptic cleft. GlyT1 is associated with both glycinergic and glutamatergic pathways, and is the main regulator of the glycine levels in the synapses. GlyT2 is the main supplier of glycine for vesicle refilling, a process that is vital to preserve the quantal glycine content in synaptic vesicles. Therefore, to control glycinergic neurotransmission efficiently, GlyT1 and GlyT2 activity must be regulated by diverse neuronal and glial signaling pathways. In this work, we have investigated the possible functional modulation of GlyT1 and GlyT2 by glycogen synthase kinase 3 (GSK3ß). This kinase is involved in mood stabilization, neurodegeneration and plasticity at excitatory and inhibitory synapses. The co-expression of GSK3ß with GlyT1 or GlyT2 in COS-7 cells and Xenopus laevis oocytes, leads to inhibition and stimulation of GlyT1 and GlyT2 activities, respectively, with a decrease of GlyT1, and an increase in GlyT2 levels at the plasma membrane. The specificity of these changes is supported by the antagonism exerted by a catalytically inactive form of the kinase and through inhibitors of GSK3ß such as lithium chloride and TDZD-8. GSK3ß also increases the incorporation of 32Pi into GlyT1 and decreases that of GlyT2. The pharmacological inhibition of the endogenous GSK3ß in neuron cultures of brainstem and spinal cord leads to an opposite modulation of GlyT1 and GlyT2.Our results suggest that GSK3ß is important for stabilizing and/or controlling the expression of functional GlyTs on the neural cell surface.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Neurônios/metabolismo , Animais , Transporte Biológico , Tronco Encefálico/citologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glicina/metabolismo , Glicina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Cloreto de Lítio/farmacologia , Neurônios/efeitos dos fármacos , Oócitos , Ratos , Ratos Wistar , Medula Espinal/citologia , Trítio/metabolismo , Xenopus laevis
12.
J Biol Chem ; 290(4): 2150-65, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25480793

RESUMO

Hyperekplexia or startle disease is a rare clinical syndrome characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. This neurological disorder can have serious consequences in neonates, provoking brain damage and/or sudden death due to apnea episodes and cardiorespiratory failure. Hyperekplexia is caused by defective inhibitory glycinergic neurotransmission. Mutations in the human SLC6A5 gene encoding the neuronal GlyT2 glycine transporter are responsible for the presynaptic form of the disease. GlyT2 mediates synaptic glycine recycling, which constitutes the main source of releasable transmitter at glycinergic synapses. Although the majority of GlyT2 mutations detected so far are recessive, a dominant negative mutant that affects GlyT2 trafficking does exist. In this study, we explore the properties and structural alterations of the S512R mutation in GlyT2. We analyze its dominant negative effect that retains wild-type GlyT2 in the endoplasmic reticulum (ER), preventing surface expression. We show that the presence of an arginine rather than serine 512 provoked transporter misfolding, enhanced association to the ER-chaperone calnexin, altered association with the coat-protein complex II component Sec24D, and thereby impeded ER exit. The S512R mutant formed oligomers with wild-type GlyT2 causing its retention in the ER. Overexpression of calnexin rescued wild-type GlyT2 from the dominant negative effect of the mutant, increasing the amount of transporter that reached the plasma membrane and dampening the interaction between the wild-type and mutant GlyT2. The ability of chemical chaperones to overcome the dominant negative effect of the disease mutation on the wild-type transporter was demonstrated in heterologous cells and primary neurons.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Mutação , Rigidez Muscular Espasmódica/genética , Animais , Biotinilação , Células COS , Calnexina/metabolismo , Córtex Cerebral/metabolismo , Chlorocebus aethiops , Densitometria , Cães , Retículo Endoplasmático/metabolismo , Genes Dominantes , Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Células Madin Darby de Rim Canino , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar , Rigidez Muscular Espasmódica/metabolismo , Transmissão Sináptica
13.
J Biol Chem ; 289(49): 34308-24, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25315779

RESUMO

Fast inhibitory glycinergic transmission occurs in spinal cord, brainstem, and retina to modulate the processing of motor and sensory information. After synaptic vesicle fusion, glycine is recovered back to the presynaptic terminal by the neuronal glycine transporter 2 (GlyT2) to maintain quantal glycine content in synaptic vesicles. The loss of presynaptic GlyT2 drastically impairs the refilling of glycinergic synaptic vesicles and severely disrupts neurotransmission. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans. Here, we show a novel endogenous regulatory mechanism that can modulate GlyT2 activity based on a compartmentalized interaction between GlyT2, neuronal plasma membrane Ca(2+)-ATPase (PMCA) isoforms 2 and 3, and Na(+)/Ca(2+)-exchanger 1 (NCX1). This GlyT2·PMCA2,3·NCX1 complex is found in lipid raft subdomains where GlyT2 has been previously found to be fully active. We show that endogenous PMCA and NCX activities are necessary for GlyT2 activity and that this modulation depends on lipid raft integrity. Besides, we propose a model in which GlyT2·PMCA2-3·NCX complex would help Na(+)/K(+)-ATPase in controlling local Na(+) increases derived from GlyT2 activity after neurotransmitter release.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células Receptoras Sensoriais/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Regulação da Expressão Gênica , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Peptídeos/farmacologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/antagonistas & inibidores , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Terminações Pré-Sinápticas/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Ratos , Ratos Wistar , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/genética , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Transmissão Sináptica , Tioureia/análogos & derivados , Tioureia/farmacologia , beta-Ciclodextrinas/farmacologia
14.
Anesthesiology ; 121(1): 160-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24598217

RESUMO

BACKGROUND: Dysfunction of spinal glycinergic neurotransmission is a major pathogenetic factor in neuropathic pain. The synaptic glycine concentration is controlled by the two glycine transporters (GlyT) 1 and 2. GlyT inhibitors act antinociceptive in various animal pain models when applied as bolus. Yet, in some studies, severe neuromotor side effects were reported. The aim of the current study was to elucidate whether continuous inhibition of GlyT ameliorates neuropathic pain without side effects and whether protein expression of GlyT1, GlyT2, or N-methyl-D-aspartate receptor subunit NR-1 in the spinal cord is affected. METHODS: In the chronic constriction injury model of neuropathic pain, male Wistar rats received specific GlyT1 and GlyT2 inhibitors (ALX5407 and ALX1393; Sigma-Aldrich, St. Louis, MO) or vehicle for 14 days via subcutaneous osmotic infusion pumps (n = 6). Mechanical allodynia and thermal hyperalgesia were assessed before, after chronic constriction injury, and every 2 days during substance application. At the end of behavioral assessment, the expression of GlyT1, GlyT2, and NR-1 in the spinal cord was determined by Western blot analysis. RESULTS: Both ALX5407 and ALX1393 ameliorated thermal hyperalgesia and mechanical allodynia in a time- and dose-dependent manner. Respiratory or neuromotor side effects were not observed. NR-1 expression in the ipsilateral spinal cord was significantly reduced by ALX5407, but not by ALX1393. The expression of GlyT1 and GlyT2 remained unchanged. CONCLUSIONS: Continuous systemic inhibition of GlyT significantly ameliorates neuropathic pain in rats. Thus, GlyT represent promising targets in pain research. Modulation of N-methyl-D-aspartate receptor expression might represent a novel mechanism for the antinociceptive action of GyT1 inhibitors.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Neuralgia/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/biossíntese , Sarcosina/análogos & derivados , Serina/análogos & derivados , Medula Espinal/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Constrição Patológica/tratamento farmacológico , Constrição Patológica/patologia , Relação Dose-Resposta a Droga , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Masculino , Neuralgia/psicologia , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Sarcosina/efeitos adversos , Sarcosina/farmacologia , Serina/efeitos adversos , Serina/farmacologia
15.
J Neurosci ; 33(35): 14269-81, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23986260

RESUMO

The neuronal glycine transporter GlyT2 plays a fundamental role in the glycinergic neurotransmission by recycling the neurotransmitter to the presynaptic terminal. GlyT2 is the main supplier of glycine for vesicle refilling, a process that is absolutely necessary to preserve quantal glycine content in synaptic vesicles. Alterations in GlyT2 activity modify glycinergic neurotransmission and may underlie several neuromuscular disorders, such as hyperekplexia, myoclonus, dystonia, and epilepsy. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans and produce congenital muscular dystonia type 2 (CMD2) in Belgian Blue cattle. GlyT2 function is strictly coupled to the sodium electrochemical gradient actively generated by the Na+/K+-ATPase (NKA). GlyT2 cotransports 3Na+/Cl-/glycine generating large rises of Na+ inside the presynaptic terminal that must be efficiently reduced by the NKA to preserve Na+ homeostasis. In this work, we have used high-throughput mass spectrometry to identify proteins interacting with GlyT2 in the CNS. NKA was detected as a putative candidate and through reciprocal coimmunoprecipitations and immunocytochemistry analyses the association between GlyT2 and NKA was confirmed. NKA mainly interacts with the raft-associated active pool of GlyT2, and low and high levels of the specific NKA ligand ouabain modulate the endocytosis and total expression of GlyT2 in neurons. The ouabain-mediated downregulation of GlyT2 also occurs in vivo in two different systems: zebrafish embryos and adult rats, indicating that this NKA-mediated regulatory mechanism is evolutionarily conserved and may play a relevant role in the physiological control of inhibitory glycinergic neurotransmission.


Assuntos
Regulação para Baixo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Neurônios/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Tronco Encefálico/citologia , Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Homeostase , Masculino , Microdomínios da Membrana/metabolismo , Ouabaína/farmacologia , Ratos , Ratos Wistar , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Medula Espinal/citologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
16.
PLoS One ; 8(5): e63230, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23650557

RESUMO

The neuronal transporter GlyT2 is a polytopic, 12-transmembrane domain, plasma membrane glycoprotein involved in the removal and recycling of synaptic glycine from inhibitory synapses. Mutations in the human GlyT2 gene (SLC6A5) that cause deficient glycine transport or defective GlyT2 trafficking are the second most common cause of hyperekplexia or startle disease. In this study we examined several aspects of GlyT2 biogenesis that involve the endoplasmic reticulum chaperone calnexin (CNX). CNX binds transiently to an intermediate under-glycosylated transporter precursor and facilitates GlyT2 processing. In cells expressing GlyT2, transporter accumulation and transport activity were attenuated by siRNA-mediated CNX knockdown and enhanced by CNX overexpression. GlyT2 binding to CNX was mediated by glycan and polypeptide-based interactions as revealed by pharmacological approaches and the behavior of GlyT2 N-glycan-deficient mutants. Moreover, transporter folding appeared to be stabilized by N-glycans. Co-expression of CNX and a fully non-glycosylated mutant rescues glycine transport but not mutant surface expression. Hence, CNX discriminates between different conformational states of GlyT2 displaying a lectin-independent chaperone activity. GlyT2 wild-type and mutant transporters were finally degraded in the lysosome. Our findings provide further insight into GlyT2 biogenesis, and a useful framework for the study of newly synthesized GlyT2 transporters bearing hyperekplexia mutations.


Assuntos
Calnexina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/biossíntese , Substituição de Aminoácidos , Animais , Células COS , Calnexina/genética , Chlorocebus aethiops , Glucosidases/antagonistas & inibidores , Glucosidases/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Glicosilação , Cinética , Manosidases/antagonistas & inibidores , Manosidases/metabolismo , Camundongos , Ligação Proteica , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteólise , Ratos , Tapsigargina/farmacologia , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas
17.
PLoS One ; 8(3): e58863, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484054

RESUMO

Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs). The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhibitory glycinergic neurotransmission is modulated by the exocytosis and endocytosis of GlyT2. We previously reported that constitutive and Protein Kinase C (PKC)-regulated endocytosis of GlyT2 is mediated by clathrin and that PKC accelerates GlyT2 endocytosis by increasing its ubiquitination. However, the role of ubiquitination in the constitutive endocytosis and turnover of this protein remains unexplored. Here, we show that ubiquitination of a C-terminus four lysine cluster of GlyT2 is required for constitutive endocytosis, sorting into the slow recycling pathway and turnover of the transporter. Ubiquitination negatively modulates the turnover of GlyT2, such that increased ubiquitination driven by PKC activation accelerates transporter degradation rate shortening its half-life while decreased ubiquitination increases transporter stability. Finally, ubiquitination of GlyT2 in neurons is highly responsive to the free pool of ubiquitin, suggesting that the deubiquitinating enzyme (DUB) ubiquitin C-terminal hydrolase-L1 (UCHL1), as the major regulator of neuronal ubiquitin homeostasis, indirectly modulates the turnover of GlyT2. Our results contribute to the elucidation of the mechanisms underlying the dynamic trafficking of this important neuronal protein which has pathological relevance since mutations in the GlyT2 gene (SLC6A5) are the second most common cause of human hyperekplexia.


Assuntos
Endocitose/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Lisina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Cães , Humanos , Imuno-Histoquímica , Imunoprecipitação , Células Madin Darby de Rim Canino , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Ratos , Ratos Wistar , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
19.
J Biol Chem ; 287(34): 28986-9002, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753417

RESUMO

Hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, producing hypertonia and apnea episodes. Although rare, this orphan disorder can have serious consequences, including sudden infant death. Dominant and recessive mutations in the human glycine receptor (GlyR) α1 gene (GLRA1) are the major cause of this disorder. However, recessive mutations in the presynaptic Na(+)/Cl(-)-dependent glycine transporter GlyT2 gene (SLC6A5) are rapidly emerging as a second major cause of startle disease. In this study, systematic DNA sequencing of SLC6A5 revealed a new dominant GlyT2 mutation: pY705C (c.2114A→G) in transmembrane domain 11, in eight individuals from Spain and the United Kingdom. Curiously, individuals harboring this mutation show significant variation in clinical presentation. In addition to classical hyperekplexia symptoms, some individuals had abnormal respiration, facial dysmorphism, delayed motor development, or intellectual disability. We functionally characterized this mutation using molecular modeling, electrophysiology, [(3)H]glycine transport, cell surface expression, and cysteine labeling assays. We found that the introduced cysteine interacts with the cysteine pair Cys-311-Cys-320 in the second external loop of GlyT2. This interaction impairs transporter maturation through the secretory pathway, reduces surface expression, and inhibits transport function. Additionally, Y705C presents altered H(+) and Zn(2+) dependence of glycine transport that may affect the function of glycinergic neurotransmission in vivo.


Assuntos
Genes Dominantes , Doenças Genéticas Inatas , Proteínas da Membrana Plasmática de Transporte de Glicina , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso , Doenças do Sistema Nervoso , Substituição de Aminoácidos , Animais , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Glicina/genética , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Transporte de Íons/genética , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Terminações Pré-Sinápticas , Transporte Proteico/genética , Espanha , Reino Unido
20.
Anesthesiology ; 116(1): 147-58, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22133759

RESUMO

BACKGROUND: Lidocaine exerts antinociceptive effects when applied systemically. The mechanisms are not fully understood but glycinergic mechanisms might be involved. The synaptic glycine concentration is controlled by glycine transporters. Whereas neurons express two types of glycine transporters, astrocytes specifically express glycine transporter 1 (GlyT1). This study focuses on effects of lidocaine and its major metabolites on GlyT1 function. METHODS: The effects of lidocaine and its metabolites monoethylglycinexylidide (MEGX), glycinexylidide, and N-ethylglycine on GlyT1 function were investigated in uptake experiments with [¹4C]-labeled glycine in primary rat astrocytes. Furthermore, the effect of lidocaine and its metabolites on glycine-induced currents were investigated in GlyT1-expressing Xenopus laevis oocytes. RESULTS: Lidocaine reduced glycine uptake only at toxic concentrations. The metabolites MEGX, glycinexylidide, and N-ethylglycine, however, significantly reduced glycine uptake (P < 0.05). Inhibition of glycine uptake by a combination of lidocaine with its metabolites at a clinically relevant concentration was diminished with increasing extracellular glycine concentrations. Detailed analysis revealed that MEGX inhibits GlyT1 function (P < 0.05), whereas N-ethylglycine was identified as an alternative GlyT1 substrate (EC50 = 55 µM). CONCLUSIONS: Although lidocaine does not function directly on GlyT1, its metabolites MEGX and N-ethylglycine [corrected] were shown to inhibit GlyT1-mediated glycine uptake by at least two different mechanisms. Whereas N-ethylglycine [corrected] was demonstrated to be an alternative GlyT1 substrate, MEGX was shown to inhibit GlyT1 activity in both primary astrocytes and in GlyT1-expressing Xenopuslaevis oocytes at clinically relevant concentrations. These findings provide new insights into the possible mechanisms for the antinociceptive effect of systemic lidocaine.


Assuntos
Anestésicos Locais/farmacologia , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Lidocaína/análogos & derivados , Lidocaína/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Western Blotting , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Glicina/metabolismo , Lidocaína/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Glicinas N-Substituídas/metabolismo , Glicinas N-Substituídas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Gravidez , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA