Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892289

RESUMO

Familial Mediterranean fever (FMF) is a systemic autoinflammatory disorder caused by inherited mutations in the MEFV (Mediterranean FeVer) gene, located on chromosome 16 (16p13.3) and encoding the pyrin protein. Despite the existing data on MEFV mutations, the exact mechanism of their effect on the development of the pathological processes leading to the spontaneous and recurrent autoinflammatory attacks observed in FMF, remains unclear. Induced pluripotent stem cells (iPSCs) are considered an important tool to study the molecular genetic mechanisms of various diseases due to their ability to differentiate into any cell type, including macrophages, which contribute to the development of FMF. In this study, we developed iPSCs from an Armenian patient with FMF carrying the M694V, p.(Met694Val) (c.2080A>G, rs61752717) pathogenic mutation in exon 10 of the MEFV gene. As a result of direct differentiation, macrophages expressing CD14 and CD45 surface markers were obtained. We found that the morphology of macrophages derived from iPSCs of a patient with the MEFV mutation significantly differed from that of macrophages derived from iPSCs of a healthy donor carrying the wild-type MEFV gene.


Assuntos
Diferenciação Celular , Febre Familiar do Mediterrâneo , Células-Tronco Pluripotentes Induzidas , Macrófagos , Mutação , Pirina , Humanos , Pirina/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/patologia , Macrófagos/metabolismo , Diferenciação Celular/genética , Masculino
2.
J Biol Chem ; 300(6): 107392, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763334

RESUMO

Telomeres, protective caps at chromosome ends, maintain genomic stability and control cell lifespan. Dysregulated telomere maintenance mechanisms (TMMs) are cancer hallmarks, enabling unchecked cell proliferation. We conducted a pan-cancer evaluation of TMM using RNA sequencing data from The Cancer Genome Atlas for 33 different cancer types and analyzed the activities of telomerase-dependent (TEL) and alternative lengthening of telomeres (ALT) TMM pathways in detail. To further characterize the TMM profiles, we categorized the tumors based on their ALT and TEL TMM pathway activities into five major phenotypes: ALT high TEL low, ALT low TEL low, ALT middle TEL middle, ALT high TEL high, and ALT low TEL high. These phenotypes refer to variations in telomere maintenance strategies, shedding light on the heterogeneous nature of telomere regulation in cancer. Moreover, we investigated the clinical implications of TMM phenotypes by examining their associations with clinical characteristics and patient outcomes. Specific TMM profiles were linked to specific survival patterns, emphasizing the potential of TMM profiling as a prognostic indicator and aiding in personalized cancer treatment strategies. Gene ontology analysis of the TMM phenotypes unveiled enriched biological processes associated with cell cycle regulation (both TEL and ALT), DNA replication (TEL), and chromosome dynamics (ALT) showing that telomere maintenance is tightly intertwined with cellular processes governing proliferation and genomic stability. Overall, our study provides an overview of the complexity of transcriptional regulation of telomere maintenance mechanisms in cancer.


Assuntos
Neoplasias , Telomerase , Homeostase do Telômero , Telômero , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Telômero/metabolismo , Telômero/genética , Telomerase/genética , Telomerase/metabolismo , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica
3.
Nucleic Acids Res ; 52(13): 7539-7555, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38783375

RESUMO

The exchange of genes between cells is known to play an important physiological and pathological role in many organisms. We show that circulating tumor DNA (ctDNA) facilitates cell-specific gene transfer between human cancer cells and explain part of the mechanisms behind this phenomenon. As ctDNA migrates into the nucleus, genetic information is transferred. Cell targeting and ctDNA integration require ERVL, SINE or LINE DNA sequences. Chemically manufactured AluSp and MER11C sequences replicated multiple myeloma (MM) ctDNA cell targeting and integration. Additionally, we found that ctDNA may alter the treatment response of MM and pancreatic cancer models. This study shows that retrotransposon DNA sequences promote cancer gene transfer. However, because cell-free DNA has been detected in physiological and other pathological conditions, our findings have a broader impact than just cancer. Furthermore, the discovery that transposon DNA sequences mediate tissue-specific targeting will open up a new avenue for the delivery of genes and therapies.


Assuntos
DNA Tumoral Circulante , Elementos de DNA Transponíveis , Humanos , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Elementos de DNA Transponíveis/genética , Linhagem Celular Tumoral , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Camundongos , Especificidade de Órgãos/genética , Retroelementos/genética , Técnicas de Transferência de Genes
4.
Schizophrenia (Heidelb) ; 10(1): 19, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368435

RESUMO

The molecular events underlying the development, manifestation, and course of schizophrenia, bipolar disorder, and major depressive disorder span from embryonic life to advanced age. However, little is known about the early dynamics of gene expression in these disorders due to their relatively late manifestation. To address this, we conducted a secondary analysis of post-mortem prefrontal cortex datasets using bioinformatics and machine learning techniques to identify differentially expressed gene modules associated with aging and the diseases, determine their time-perturbation points, and assess enrichment with expression quantitative trait loci (eQTL) genes. Our findings revealed early, mid, and late deregulation of expression of functional gene modules involved in neurodevelopment, plasticity, homeostasis, and immune response. This supports the hypothesis that multiple hits throughout life contribute to disease manifestation rather than a single early-life event. Moreover, the time-perturbed functional gene modules were associated with genetic loci affecting gene expression, highlighting the role of genetic factors in gene expression dynamics and the development of disease phenotypes. Our findings emphasize the importance of investigating time-dependent perturbations in gene expression before the age of onset in elucidating the molecular mechanisms of psychiatric disorders.

5.
Mol Oncol ; 18(3): 528-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115217

RESUMO

Neural stem cells (NSCs) are considered to be valuable candidates for delivering a variety of anti-cancer agents, including oncolytic viruses, to brain tumors. However, owing to the previously reported tumorigenic potential of NSC cell lines after intranasal administration (INA), here we identified the human hepatic stellate cell line LX-2 as a cell type capable of longer resistance to replication of oncolytic adenoviruses (OAVs) as a therapeutic cargo, and that is non-tumorigenic after INA. Our data show that LX-2 cells can longer withstand the OAV XVir-N-31 replication and oncolysis than NSCs. By selecting the highly migratory cell population out of LX-2, an offspring cell line with a higher and more stable capability to migrate was generated. Additionally, as a safety backup, we applied genomic herpes simplex virus thymidine kinase (HSV-TK) integration into LX-2, leading to high vulnerability to ganciclovir (GCV). Histopathological analyses confirmed the absence of neoplasia in the respiratory tracts and brains of immuno-compromised mice 3 months after INA of LX-2 cells. Our data suggest that LX-2 is a novel, robust, and safe cell line for delivering anti-cancer and other therapeutic agents to the brain.


Assuntos
Antivirais , Terapia Genética , Camundongos , Humanos , Animais , Administração Intranasal , Linhagem Celular , Sistema Nervoso Central/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Timidina Quinase/uso terapêutico
6.
Front Plant Sci ; 14: 1276764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143573

RESUMO

The present study is the first in-depth research evaluating the genetic diversity and potential resistance of Armenian wild grapes utilizing DNA-based markers to understand the genetic signature of this unexplored germplasm. In the proposed research, five geographical regions with known viticultural history were explored. A total of 148 unique wild genotypes were collected and included in the study with 48 wild individuals previously collected as seed. A total of 24 nSSR markers were utilized to establish a fingerprint database to infer information on the population genetic diversity and structure. Three nSSR markers linked to the Ren1 locus were analyzed to identify potential resistance against powdery mildew. According to molecular fingerprinting data, the Armenian V. sylvestris gene pool conserves a high genetic diversity, displaying 292 different alleles with 12.167 allele per loci. The clustering analyses and diversity parameters supported eight genetic groups with 5.6% admixed proportion. The study of genetic polymorphism at the Ren1 locus revealed that 28 wild genotypes carried three R-alleles and 34 wild genotypes carried two R-alleles associated with PM resistance among analyzed 107 wild individuals. This gene pool richness represents an immense reservoir of under-explored genetic diversity and breeding potential. Therefore, continued survey and research efforts are crucial for the conservation, sustainable management, and utilization of Armenian wild grape resources in the face of emerging challenges in viticulture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA