Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Neurosci Res ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508957

RESUMO

Sleep apnea is regarded as an important risk factor in the pathogenesis of Alzheimer disease (AD). Chronic intermittent hypoxia treatment (IHT) given during the sleep period of the circadian cycle in experimental animals is a well-established sleep apnea model. Here we report that transient IHT for 4 days on AD model mice causes Aß overproduction 2 months after IHT presumably via upregulation of synaptic BACE1, side-by-side with tau hyperphosphorylation. These results suggest that even transient IHT may be sufficient to cause long-lasting changes in the molecules measured as AD biomarkers in the brain.

2.
Elife ; 122024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529532

RESUMO

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.


Assuntos
Disfunção Cognitiva , Endofenótipos , Animais , Camundongos , Humanos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Lactatos/metabolismo , Concentração de Íons de Hidrogênio
3.
PLoS One ; 18(5): e0285897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37224113

RESUMO

Peripheral nerves conducting motor and somatosensory signals in vertebrate consist of myelinated and unmyelinated axons. In vitro myelination culture, generated by co-culturing Schwann cells (SCs) and dorsal root ganglion (DRG) neurons, is an indispensable tool for modeling physiological and pathological conditions of the peripheral nervous system (PNS). This technique allows researchers to overexpress or downregulate molecules investigated in neurons or SCs to evaluate the effect of such molecules on myelination. In vitro myelination experiments are usually time-consuming and labor-intensive to perform. Here we report an optimized protocol for in vitro myelination using DRG explant culture. We found that our in vitro myelination using DRG explant (IVMDE) culture not only achieves myelination with higher efficiency than conventional in vitro myelination methods, but also can be used to observe Remak bundle and non-myelinating SCs, which were unrecognizable in conventional methods. Because of these characteristics, IVMDE may be useful in modeling PNS diseases, including Charcot Marie Tooth disease (CMT), in vitro. These results suggest that IVMDE may achieve a condition more similar to peripheral nerve myelination observed during physiological development.


Assuntos
Gânglios Espinais , Sistema Nervoso Periférico , Células de Schwann , Axônios , Diferenciação Celular
4.
Hum Mol Genet ; 32(9): 1511-1523, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36579833

RESUMO

At the neuromuscular junction, the downstream of tyrosine kinase 7 (DOK7) enhances the phosphorylation of muscle-specific kinase (MuSK) and induces clustering of acetylcholine receptors (AChRs). We identified a patient with congenital myasthenic syndrome (CMS) with two heteroallelic mutations in DOK7, c.653-1G>C in intron 5 and c.190G>A predicting p.G64R in the pleckstrin homology domain. iPS cells established from the patient (CMS-iPSCs) showed that c.653-1G>C caused in-frame skipping of exon 6 (120 bp) and frame-shifting activation of a cryptic splice site deleting seven nucleotides in exon 6. p.G64R reduced the expression of DOK7 to 10% of wild-type DOK7, and markedly compromised AChR clustering in transfected C2C12 myotubes. p.G64R-DOK7 made insoluble aggresomes at the juxtanuclear region in transfected C2C12 myoblasts and COS7 cells, which were co-localized with molecules in the autophagosome system. A protease inhibitor MG132 reduced the soluble fraction of p.G64R-DOK7 and enhanced the aggresome formation of p.G64R-DOK7. To match the differentiation levels between patient-derived and control induced pluripotent stem cells (iPSCs), we corrected c.190G>A (p.G64R) by CRISPR/Cas9 to make isogenic iPSCs while retaining c.653-1G>C (CMS-iPSCsCas9). Myogenically differentiated CMS-iPSCs showed juxtanuclear aggregates of DOK7, reduced expression of endogenous DOK7 and reduced phosphorylation of endogenous MuSK. Another mutation, p.T77M, also made aggresome to a less extent compared with p.G64R in transfected COS7 cells. These results suggest that p.G64R-DOK7 makes aggresomes in cultured cells and is likely to compromise MuSK phosphorylation for AChR clustering.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes Miastênicas Congênitas , Humanos , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Musculares/genética , Mutação , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Fosforilação , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
5.
Neural Regen Res ; 18(4): 746-749, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204830

RESUMO

Neurite degeneration, a major component of many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, is not part of the typical apoptosis signaling mechanism, but rather it appears that a self-destructive process is in action. Oxidative stress is a well-known inducer of neurodegenerative pathways: neuronal cell death and neurite degeneration. Although oxidative stress exerts cytotoxic effects leading to neuronal loss, the pathogenic mechanisms and precise signaling pathways by which oxidative stress causes neurite degeneration have remained entirely unknown. We previously reported that reactive oxygen species generated by NADPH oxidases induce activation of the E3 ubiquitin ligase ZNRF1 in neurons, which promotes neurite degeneration. In this process, the phosphorylation of an NADPH oxidase subunit p47-phox at the 345th serine residue serves as an important checkpoint to initiate the ZNRF1-dependent neurite degeneration. Evidence provides new insights into the mechanism of reactive oxygen species-mediated neurodegeneration. In this review, we focus specifically on reactive oxygen species-induced neurite degeneration by highlighting a phosphorylation-dependent regulation of the molecular interaction between ZNRF1 and the NADPH oxidase complex.

6.
Neurosci Res ; 183: 7-16, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35882301

RESUMO

Neuroethics is the study of how neuroscience impacts humans and society. About 15 years have passed since neuroethics was introduced to Japan, yet the field of neuroethics still seeks developed methodologies and an established academic identity. In light of progress in neuroscience and neurotechnology, the challenges for Japanese neuroethics in the 2020 s can be categorized into five topics. (1) The need for further research into the importance of informed consent in psychiatric research and the promotion of public-patient engagement. (2) The need for a framework that constructs a global environment for neuroscience research that utilizes reliable samples and data. (3) The need for ethical support within a Japanese context regarding the construction of brain banks and the research surrounding their use. It is also important to reconsider the moral value of the human neural system and make comparisons with non-human primates. (4) An urgent need to study neuromodulation technologies that intervene in emotions. (5) The need to reconsider neuroscience and neurotechnology from social points of view. Rules for neuroenhancements and do-it-yourself neurotechnologies are urgently needed, while from a broader perspective, it is essential to study the points of contact between neuroscience and public health.


Assuntos
Neurociências , Encéfalo , Emoções , Humanos , Japão , Princípios Morais
7.
Prog Neurobiol ; 216: 102288, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654209

RESUMO

Duchenne muscular dystrophy (DMD) is a muscle disorder caused by DMD mutations and is characterized by neurobehavioural comorbidities due to dystrophin deficiency in the brain. The lack of Dp140, a dystrophin short isoform, is clinically associated with intellectual disability and autism spectrum disorders (ASDs), but its postnatal functional role is not well understood. To investigate synaptic function in the presence or absence of brain Dp140, we utilized two DMD mouse models, mdx23 and mdx52 mice, in which Dp140 is preserved or lacking, respectively. ASD-like behaviours were observed in pups and 8-week-old mdx52 mice lacking Dp140. Paired-pulse ratio of excitatory postsynaptic currents, glutamatergic vesicle number in basolateral amygdala neurons, and glutamatergic transmission in medial prefrontal cortex-basolateral amygdala projections were significantly reduced in mdx52 mice compared to those in wild-type and mdx23 mice. ASD-like behaviour and electrophysiological findings in mdx52 mice were ameliorated by restoration of Dp140 following intra-cerebroventricular injection of antisense oligonucleotide drug-induced exon 53 skipping or intra-basolateral amygdala administration of Dp140 mRNA-based drug. Our results implicate Dp140 in ASD-like behaviour via altered glutamatergic transmission in the basolateral amygdala of mdx52 mice.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Éxons , Camundongos , Distrofia Muscular de Duchenne/genética , Comportamento Social
8.
Brain Commun ; 4(3): fcac154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770133

RESUMO

Myotonic dystrophy type 1 is a multisystem genetic disorder involving the muscle, heart and CNS. It is caused by toxic RNA transcription from expanded CTG repeats in the 3'-untranslated region of DMPK, leading to dysregulated splicing of various genes and multisystemic symptoms. Although aberrant splicing of several genes has been identified as the cause of some muscular symptoms, the pathogenesis of CNS symptoms prevalent in patients with myotonic dystrophy type 1 remains unelucidated, possibly due to a limitation in studying a diverse mixture of different cell types, including neuronal cells and glial cells. Previous studies revealed neuronal loss in the cortex, myelin loss in the white matter and the presence of axonal neuropathy in patients with myotonic dystrophy type 1. To elucidate the CNS pathogenesis, we investigated cell type-specific abnormalities in cortical neurons, white matter glial cells and spinal motor neurons via laser-capture microdissection. We observed that the CTG repeat instability and cytosine-phosphate-guanine (CpG) methylation status varied among the CNS cell lineages; cortical neurons had more unstable and longer repeats with higher CpG methylation than white matter glial cells, and spinal motor neurons had more stable repeats with lower methylation status. We also identified splicing abnormalities in each CNS cell lineage, such as DLGAP1 in white matter glial cells and CAMKK2 in spinal motor neurons. Furthermore, we demonstrated that aberrant splicing of CAMKK2 is associated with abnormal neurite morphology in myotonic dystrophy type 1 motor neurons. Our laser-capture microdissection-based study revealed cell type-dependent genetic, epigenetic and splicing abnormalities in myotonic dystrophy type 1 CNS, indicating the significant potential of cell type-specific analysis in elucidating the CNS pathogenesis.

9.
Exp Neurol ; 352: 114024, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35218706

RESUMO

Oxidative stress is a well-known inducer of two major neurodegenerative pathways, neuronal cell death and neurite degeneration. We previously reported that reactive oxygen species (ROS) generated by NADPH oxidases induces EGFR-dependent phosphorylation and activation of ZNRF1 ubiquitin ligase in neurons, which promotes neuronal cell death and neurite degeneration. While these findings provide a potential therapeutic avenue for neurodegeneration, a deeper understanding of the molecular mechanisms of this pathway have emerged as key points of interest. Here, we show that a NADPH oxidase subunit p47-phox/neutrophil cytosolic factor 1 regulates ZNRF1 activity. Using an in vitro neurite degeneration model, we demonstrate that transection-induced phosphorylation of p47-phox at the 345th serine residue by p38 MAPK serves as an initiating signal to activate ZNRF1. The phosphorylated p47 (pS345) or a phospho-mimetic mutant p47-phox binds directly to ZNRF1 whereas a phosphorylation-resistant mutant p47-phox cannot bind to ZNRF1 and its overexpression in neurites significantly suppresses ZNRF1 activation, AKT ubiquitination, and degeneration after transection, suggesting that pS345 might enhance the EGFR-mediated phosphorylation-dependent activation of ZNRF1. These results suggest that pS345 might represent an important checkpoint to initiate the ZNRF1-mediated neurite degeneration. Our findings provide novel insights into the mechanism of ROS-mediated neurodegeneration.


Assuntos
NADPH Oxidases , Serina , Ativação Enzimática , Receptores ErbB/metabolismo , NADPH Oxidases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo
10.
Neurosci Res ; 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34767875

RESUMO

Axonal degeneration is observed in a variety of contexts in both the central and peripheral nervous systems. Pathological signaling to regulate the progression of axonal degeneration has long been studied using Wallerian degeneration, the prototypical axonal degradation observed after injury, as a representative model. Understanding metabolism of nicotinamide adenine dinucleotide (NAD+) and the functional regulation of Sarm1 has generated great progress in this field, but there are a number of remaining questions. Here, in this short review, we describe our current understanding of the axonal degeneration mechanism, with special reference to the biology related to wlds mice and Sarm1. Furthermore, variations of axonal degeneration initiation are discussed in order to address the remaining questions needed for mechanistic clarification.

11.
Front Mol Neurosci ; 14: 748721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630040

RESUMO

Small non-coding vault RNAs (vtRNAs) have been described as a component of the vault complex, a hollow-and-barrel-shaped ribonucleoprotein complex found in most eukaryotes. It has been suggested that the function of vtRNAs might not be limited to simply maintaining the structure of the vault complex. Despite the increasing research on vtRNAs, little is known about their physiological functions. Recently, we have shown that murine vtRNA (mvtRNA) up-regulates synaptogenesis by activating the mitogen activated protein kinase (MAPK) signaling pathway. mvtRNA binds to and activates mitogen activated protein kinase 1 (MEK1), and thereby enhances MEK1-mediated extracellular signal-regulated kinase activation. Here, we introduce the regulatory mechanism of MAPK signaling in synaptogenesis by vtRNAs and discuss the possibility as a novel molecular basis for synapse formation.

12.
Front Mol Neurosci ; 14: 697973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194300

RESUMO

Since neurons have long neurites including axons, it is crucial for the axons to transport many intracellular substances such as proteins and mitochondria in order to maintain their morphology and function. In addition, mRNAs have also been shown to be transported within axons. RNA-binding proteins form complexes with mRNAs, and regulate transport of the mRNAs to axons, as well as locally translate them into proteins. Local translation of mRNAs actively occurs during the development and damage of neurons, and plays an important role in axon elongation, regeneration, and synapse formation. In recent years, it has been reported that impaired axonal transport and local translation of mRNAs may be involved in the pathogenesis of some neurodegenerative diseases. In this review, we discuss the significance of mRNA axonal transport and their local translation in amyotrophic lateral sclerosis/frontotemporal dementia, spinal muscular atrophy, Alzheimer's disease, and fragile X syndrome.

13.
Commun Integr Biol ; 14(1): 61-65, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33948134

RESUMO

The small non-coding vault RNA (vtRNA) is a component of the vault complex, a ribonucleoprotein complex found in most eukaryotes. vtRNAs regulate a variety of cellular functions when unassociated with the vault complex. Human has four vtRNA paralogs (hvtRNA1-1, hvtRNA1-2, hvtRNA1-3, hvtRNA2-1), which are highly similar and differ only slightly in primary and secondary structure. Despite the increasing research on vtRNAs, a feature that distinguishes one hvtRNA from the others has not been recognized. Recently, we demonstrated that murine vtRNA (mvtRNA) promotes synapse formation by modulating the MAPK signaling pathway. Here we showed that expression ofhvtRNA1-1, but not hvtRNA2-1 increases the expression of synaptic marker proteins, ERK phosphorylation and the number of PSD95 and Synapsin I double positive puncta to an extent similar to that of mvtRNA, suggesting that hvtRNA1-1 may enhance synapse formation. This finding opens new perspectives to uncover the function of the different vtRNA paralogs.

14.
Sci Transl Med ; 13(591)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910978

RESUMO

Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Tecido Adiposo , Animais , Humanos , Inflamação , Macrófagos , Camundongos , Camundongos Knockout
15.
Nihon Yakurigaku Zasshi ; 156(2): 66-70, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33642532

RESUMO

Neurons communicate with other cells via long processes, i.e., axons and dendrites, functionally and morphologically specialized tree-like structures. Formation and maintenance of such processes play a crucial role in neuronal functions. Axons are particularly important for construction of neuronal network, and, together with synapses at the end of them, play a central role in transmission of information. Axonal degeneration, a phenomenon that once formed axons lose structural integrity, is most typically observed as "Wallerian degeneration", in which injured axonal segment (distal to the site of injury) degenerates. Different forms of axonal degeneration are also observed in a variety of contexts, including pathogenesis and progression of different neurodegenerative disorders, as well as neuronal network formation during development. Thus, understanding of regulatory mechanism of axonal degeneration is important in many aspects, such as for clarification of neuronal morphogenesis mechanism, and for development of neuroprotective therapy against neurological disorders. Here, I discuss recent progress in the research field of axonal degeneration mechanism.


Assuntos
Doenças Neurodegenerativas , Degeneração Walleriana , Axônios , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios , Sinapses , Degeneração Walleriana/tratamento farmacológico , Degeneração Walleriana/patologia
16.
Neuroimage Clin ; 30: 102600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33741307

RESUMO

Psychiatric and neurological disorders are afflictions of the brain that can affect individuals throughout their lifespan. Many brain magnetic resonance imaging (MRI) studies have been conducted; however, imaging-based biomarkers are not yet well established for diagnostic and therapeutic use. This article describes an outline of the planned study, the Brain/MINDS Beyond human brain MRI project (BMB-HBM, FY2018 ~ FY2023), which aims to establish clinically-relevant imaging biomarkers with multi-site harmonization by collecting data from healthy traveling subjects (TS) at 13 research sites. Collection of data in psychiatric and neurological disorders across the lifespan is also scheduled at 13 sites, whereas designing measurement procedures, developing and analyzing neuroimaging protocols, and databasing are done at three research sites. A high-quality scanning protocol, Harmonization Protocol (HARP), was established for five high-quality 3 T scanners to obtain multimodal brain images including T1 and T2-weighted, resting-state and task functional and diffusion-weighted MRI. Data are preprocessed and analyzed using approaches developed by the Human Connectome Project. Preliminary results in 30 TS demonstrated cortical thickness, myelin, functional connectivity measures are comparable across 5 scanners, suggesting sensitivity to subject-specific connectome. A total of 75 TS and more than two thousand patients with various psychiatric and neurological disorders are scheduled to participate in the project, allowing a mixed model statistical harmonization. The HARP protocols are publicly available online, and all the imaging, demographic and clinical information, harmonizing database will also be made available by 2024. To the best of our knowledge, this is the first project to implement a prospective, multi-level harmonization protocol with multi-site TS data. It explores intractable brain disorders across the lifespan and may help to identify the disease-specific pathophysiology and imaging biomarkers for clinical practice.


Assuntos
Encefalopatias , Conectoma , Encéfalo/diagnóstico por imagem , Humanos , Longevidade , Imageamento por Ressonância Magnética , Estudos Prospectivos
17.
J Cell Biol ; 220(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439240

RESUMO

The small noncoding vault RNA (vtRNA) is a component of the vault complex, a ribonucleoprotein complex found in most eukaryotes. Emerging evidence suggests that vtRNAs may be involved in the regulation of a variety of cellular functions when unassociated with the vault complex. Here, we demonstrate a novel role for vtRNA in synaptogenesis. Using an in vitro synapse formation model, we show that murine vtRNA (mvtRNA) promotes synapse formation by modulating the MAPK signaling pathway. mvtRNA is transported to the distal region of neurites as part of the vault complex. Interestingly, mvtRNA is released from the vault complex in the neurite by a mitotic kinase Aurora-A-dependent phosphorylation of MVP, a major protein component of the vault complex. mvtRNA binds to and activates MEK1 and thereby enhances MEK1-mediated ERK activation in neurites. These results suggest the existence of a regulatory mechanism of the MAPK signaling pathway by vtRNAs as a new molecular basis for synapse formation.


Assuntos
Sistema de Sinalização das MAP Quinases , Pequeno RNA não Traduzido/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase A/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cinesinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neuritos/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Densidade Pós-Sináptica/efeitos dos fármacos , Densidade Pós-Sináptica/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Sinapses/efeitos dos fármacos , Partículas de Ribonucleoproteínas em Forma de Abóbada/química , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo
18.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33170806

RESUMO

Age-related sarcopenia constitutes an important health problem associated with adverse outcomes. Sarcopenia is closely associated with fat infiltration in muscle, which is attributable to interstitial mesenchymal progenitors. Mesenchymal progenitors are nonmyogenic in nature but are required for homeostatic muscle maintenance. However, the underlying mechanism of mesenchymal progenitor-dependent muscle maintenance is not clear, nor is the precise role of mesenchymal progenitors in sarcopenia. Here, we show that mice genetically engineered to specifically deplete mesenchymal progenitors exhibited phenotypes markedly similar to sarcopenia, including muscle weakness, myofiber atrophy, alterations of fiber types, and denervation at neuromuscular junctions. Through searching for genes responsible for mesenchymal progenitor-dependent muscle maintenance, we found that Bmp3b is specifically expressed in mesenchymal progenitors, whereas its expression level is significantly decreased during aging or adipogenic differentiation. The functional importance of BMP3B in maintaining myofiber mass as well as muscle-nerve interaction was demonstrated using knockout mice and cultured cells treated with BMP3B. Furthermore, the administration of recombinant BMP3B in aged mice reversed their sarcopenic phenotypes. These results reveal previously unrecognized mechanisms by which the mesenchymal progenitors ensure muscle integrity and suggest that age-related changes in mesenchymal progenitors have a considerable impact on the development of sarcopenia.


Assuntos
Envelhecimento/metabolismo , Regulação da Expressão Gênica , Fator 10 de Diferenciação de Crescimento/biossíntese , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/metabolismo , Sarcopenia/metabolismo , Adulto , Envelhecimento/genética , Envelhecimento/patologia , Animais , Feminino , Fator 10 de Diferenciação de Crescimento/genética , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Sarcopenia/genética , Sarcopenia/patologia
19.
Acta Neuropathol ; 140(5): 695-713, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803350

RESUMO

Mislocalization and abnormal deposition of TDP-43 into the cytoplasm (TDP-43 proteinopathy) is a hallmark in neurons of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the pathogenic mechanism of the diseases linked to TDP-43 is largely unknown. We hypothesized that the failure of mRNA transport to neuronal axons by TDP-43 may contribute to neurodegeneration in ALS and FTLD, and sought to examine the function of TDP-43 by identifying its target mRNA for axonal transport. We found that mRNAs related to translational function including ribosomal proteins (RPs) were decreased by shRNA-based TDP-43 knock-down in neurites of cortical neurons. TDP-43 binds to and transports the RP mRNAs through their 5' untranslated region, which contains a common 5' terminal oligopyrimidine tract motif and a downstream GC-rich region. We showed by employing in vitro and in vivo models that the RP mRNAs were translated and incorporated into native ribosomes locally in axons to maintain functionality of axonal ribosomes, which is required for local protein synthesis in response to stimulation and stress to axons. We also found that RP mRNAs were reduced in the pyramidal tract of sporadic ALS cases harboring TDP-43 pathology. Our results elucidated a novel function of TDP-43 to control transport of RP mRNAs and local translation by ribosomes to maintain morphological integrity of neuronal axons, and proved the influence of this function of TDP-43 on neurodegeneration in ALS and FTLD associated with TDP-43 proteinopathy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Biossíntese de Proteínas/fisiologia , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
20.
Stem Cell Res ; 47: 101884, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32711388

RESUMO

Facioscapulohumeral muscular dystrophy type2 (FSHD2), which constitutes approximately 5% of total FSHD cases and develops the same symptoms as FSHD type 1 (FSHD1), is caused by various mutations in genes including SMCHD1. We report the generation and characterization of an iPSC line derived from an FSHD2 patient carrying the SMCHD1 p.Lys607Ter mutation and its gene-corrected iPSC line which are free from transgene. These iPSC lines maintained normal karyotype, presented typical morphology, expressed endogenous pluripotency markers, and could be differentiated into ectodermal, mesodermal and endodermal cells, confirming their pluripotency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA