Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 664636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968118

RESUMO

The cuticle-covered surface forms the interface between plant parts, including fruits, and their environment. The physical and chemical properties of fruit surfaces profoundly influence plant-frugivore interactions by shaping the susceptibility and suitability of the host for the attacker. Grapevine (Vitis vinifera, Vitaceae) serves as one of the various host plants of the spotted wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), which is invasive in several parts of the world and can cause major crop losses. The susceptibility of wine towards this pest species differs widely among varieties. The objective of our study was to identify physical and chemical traits of the berry surface that may explain the differences in susceptibility of five grape varieties to D. suzukii. Both preferences of adult D. suzukii and offspring performance on intact versus dewaxed (epicuticular wax layer mechanically removed) grape berries were investigated in dual-choice assays. Moreover, the morphology and chemical composition of cuticular waxes and cutin of the different varieties were analyzed. Bioassays revealed that the epicuticular wax layer of most tested grape varieties influenced the preference behavior of adult flies; even less susceptible varieties became more susceptible after removal of these waxes. In contrast, neither offspring performance nor berry skin firmness were affected by the epicuticular wax layer. The wax morphology and the composition of both epi- and intracuticular waxes differed pronouncedly, especially between more and less susceptible varieties, while cutin was dominated by ω-OH-9/10-epoxy-C18 acid and the amount was comparable among varieties within sampling time. Our results highlight the underestimated role of the epicuticular surface and cuticle integrity in grape susceptibility to D. suzukii.

2.
PLoS One ; 16(2): e0246693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606728

RESUMO

The grapevine berry surface is covered by a cuticle consisting of cutin and various lipophilic wax compounds. The latter build the main barrier for transpirational water loss and protect the fruit against environmental factors e.g. pests, mechanical impacts or radiation. The integrety of the fruit surface is one important key factor for post-harvest quality and storage of fruits. Nonetheless, the developmental pattern of cuticular wax was so far only investigated for a very limited number of fruits. Therefore, we performed comparative investigations on the compositional and morphological nature of epicuticular wax crystals and underlying wax during fruit development in Vitis vinifera. The main compound oleanolic acid belongs to the pentacyclic triterpenoids, which occur very early in the development in high amounts inside the cuticle. The amount increases until veraison and decreases further during ripening. In general, very-long chain aliphatic (VLCA) compounds are present in much smaller amounts and alcohols and aldehydes follow the same trend during development. In contrast, the amount of fatty acids constantly increases from fruit set to ripening while wax esters only occur in significant amount at veraison and increase further. Wax crystals at the fruit surface are solely composed of VLCAs and the morphology changes during development according to the compositional changes of the VLCA wax compounds. The remarkable compositional differences between epicuticular wax crystals and the underlying wax are important to understand in terms of studying grape-pest interactions or the influence of environmental factors, since only wax crystals directly face the environment.


Assuntos
Frutas/crescimento & desenvolvimento , Vitis/metabolismo , Ceras/química , Ácidos Graxos/análise , Frutas/metabolismo , Lipídeos de Membrana/metabolismo , Ácido Oleanólico/análise , Transpiração Vegetal/fisiologia , Vitis/crescimento & desenvolvimento , Ceras/análise , Ceras/metabolismo
3.
Front Plant Sci ; 12: 766602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069622

RESUMO

Waxes are critical in limiting non-stomatal water loss in higher terrestrial plants by making up the limiting barrier for water diffusion across cuticles. Using a differential extraction protocol, we investigated the influence of various wax fractions on the cuticular transpiration barrier. Triterpenoids (TRPs) and very long-chain aliphatics (VLCAs) were selectively extracted from isolated adaxial leaf cuticles using methanol (MeOH) followed by chloroform (TCM). The water permeabilities of the native and the solvent-treated cuticles were measured gravimetrically. Seven plant species (Camellia sinensis, Ficus elastica, Hedera helix, Ilex aquifolium, Nerium oleander, Vinca minor, and Zamioculcas zamiifolia) with highly varying wax compositions ranging from nearly pure VLCA- to TRP-dominated waxes were selected. After TRP removal with MeOH, water permeability did not or only slightly increase. The subsequent VLCA extraction with TCM led to increases in cuticular water permeabilities by up to two orders of magnitude. These effects were consistent across all species investigated, providing direct evidence that the cuticular transpiration barrier is mainly composed of VLCA. In contrast, TRPs play no or only a minor role in controlling water loss.

4.
Pest Manag Sci ; 75(12): 3405-3412, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31436379

RESUMO

BACKGROUND: The barrier to diffusion of organic solutes across the plant cuticle is composed of waxes consisting of very long-chain aliphatic (VLCA) and, to varying degrees, cyclic compounds like pentacyclic triterpenoids. The roles of both fractions in controlling cuticular penetration by organic solutes, e.g. the active ingredients (AI) of pesticides, are unknown to date. We studied the permeability of isolated leaf cuticular membranes from Garcinia xanthochymus and Prunus laurocerasus for lipophilic azoxystrobin and theobromine as model compounds for hydrophilic AIs. RESULTS: The wax of P. laurocerasus consists of VLCA (12%) and cyclic compounds (88%), whereas VLCAs make up 97% of the wax of G. xanthochymus. We show that treating isolated cuticles with methanol almost quantitatively releases the cyclic fraction while leaving the VLCA fraction essentially intact. All VLCAs were subsequently removed using chloroform. In both species, the permeance of the two model compounds did not change significantly after methanol treatment, whereas chloroform extraction had a large effect on organic solute permeability. CONCLUSION: The VLCA wax fraction makes up the permeability barrier for organic solutes, whereas cyclic compounds even in high amounts have a negligible role. This is of significance when optimizing the foliar uptake of pesticides. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Garcinia/fisiologia , Compostos Orgânicos/química , Folhas de Planta/fisiologia , Prunus/fisiologia , Ceras/química , Transporte Biológico , Difusão , Permeabilidade
6.
J Agric Food Chem ; 66(23): 5770-5777, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29787258

RESUMO

We comprehensively studied the complexity of the mode of action of adjuvants by uncoupling the parameters contributing to the spray process during foliar application of agrochemicals. The ethoxylated sorbitan esters Tween 20 and Tween 80 improved the efficiency of pinoxaden (PXD) in controlling grass-weed species in greenhouse experiments by aiding retention, having humectant properties, maintaining the bioavailability, and increasing the cuticular penetration of PXD. The nonethoxylated sorbitan esters Span 20 and Span 80 showed minimal effects on retention, droplet hydration, or cuticular penetration, resulting in reduced PXD effects in the greenhouse. Tris(2-ethylhexyl)phosphate (TEHP) does not contribute much to retention and spreading but strongly enhances the diffusion of PXD across isolated P. laurocerasus cuticular membranes. As TEHP was most efficient in controlling the growth of grass-weed species, we propose that the direct effect of penetration aids on cuticular permeation plays a key role in the efficiency of foliar-applied agrochemicals.


Assuntos
Agricultura/métodos , Agroquímicos/administração & dosagem , Compostos Heterocíclicos com 2 Anéis/administração & dosagem , Organofosfatos/administração & dosagem , Polissorbatos/administração & dosagem , Tensoativos/administração & dosagem , Disponibilidade Biológica , Fenômenos Químicos , Herbicidas , Organofosfatos/química , Permeabilidade , Polissorbatos/química , Solventes , Tensoativos/química
7.
J Agric Food Chem ; 64(26): 5310-6, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27268143

RESUMO

Fundamental experimental data for moisture absorption of non-ionic polydisperse surfactants with differing ethylene oxide (EO) content and variable aliphatic portions were measured at relative humidities between 0 and 95% at 25 °C. Remarkable differences in moisture absorption were observed between surfactant classes but also within one series of surfactants differing in either EO content or the long-chain aliphatic fraction. Both the EO units as well as the entire molecular structure, including also the lipophilic domain, were discussed to account for the humectant activity of surfactants. Water sorption isotherms showed an exponential shape, which was argued to be associated with the formation of a "free" water domain. These humectant properties might be relevant to the behavior of a foliar-applied spray droplet of agrochemical formulation products because the uptake of active ingredients will be enhanced as a result of deferred crystal precipitation.


Assuntos
Tensoativos/química , Água/química , Adsorção , Estrutura Molecular , Temperatura
8.
Planta ; 242(5): 1207-19, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26159434

RESUMO

MAIN CONCLUSION: In litchi and longan fruits, a specialised pericarp controls water loss by a protective system consisting of two resistances in series and two water reservoirs separated by a barrier. In the fruits of litchi (Litchi chinensis) and longan (Dimocarpus longan), the pericarp is solely a protective structure lacking functional stomata and completely enclosing the aril that is the edible part. Maintaining a high water content of the fruits is crucial for ensuring the economic value of these important fruit crops. The water loss rates from mature fruits were determined and analysed in terms of the properties of the pericarps. Water loss kinetics and sorption isotherms were measured gravimetrically. The pericarps were studied with microscopy, and cuticular waxes and cutin were analysed with gas chromatography and mass spectrometry. The kinetics of fruit water loss are biphasic with a high initial rate and a lower equilibrium rate lasting for many hours. The outer and inner surfaces of the pericarps are covered with cuticles. Litchi and longan fruits have a unique type of transpiration barrier consisting of two resistances in series (endo- and exocarp cuticles) and two reservoirs of water (aril and mesocarp). The exocarp permeability controls the water loss from fresh fruits while in fruits kept for an extended time at low relative humidity it is determined by the endo- and exocarp permeabilities. Permeances measured are within the range for typical fruit cuticles. The findings may be used to design optimal postharvest storage strategies for litchi and longan fruits.


Assuntos
Frutas/metabolismo , Litchi/metabolismo , Água/metabolismo , Proteínas de Plantas/metabolismo
9.
J Exp Bot ; 61(14): 3865-73, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631051

RESUMO

The permeabilities of amino acids for isolated cuticular membranes of ivy (Hedera helix L.) were measured at different pH. Cuticular permeances were lowest for the zwitterionic form at pH 6, followed by the cationic form at pH 1. Highest permeances were obtained for the anionic form at pH 11. Permeances were not correlated with octanol/water partition coefficients and decreased at a given pH with increasing molar volume of the solute. This finding suggests that permeation takes place in the polar cuticular pathways. The effect of pH on the cuticular transport properties was analysed according to the porous membrane model considering the polyelectrolytic character of the cuticle in terms of porosity, tortuosity, and size selectivity of the aqueous cuticular pathway which is altered by pH. An increase of water content and permeability of the cuticular membrane was caused by the dissociation of weak acidic groups with increasing pH leading to a swelling of the cuticle induced by fixed negative charges. In addition, the pH-dependent size of the hydration shell of the amino acids was identified as a secondary factor explaining the variability of cuticular permeances.


Assuntos
Aminoácidos/metabolismo , Hedera/metabolismo , Folhas de Planta/metabolismo , Água/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , Permeabilidade , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA