Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Mol Ecol ; 32(3): 628-643, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336814

RESUMO

Hybridization is known to be part of many species' evolutionary history. Sea turtles have a fascinating hybridization system in which species separated by as much as 43 million years are still capable of hybridizing. Indeed, the largest nesting populations in Brazil of loggerheads (Caretta caretta) and hawksbills (Eretmochelys imbricata) have a high incidence of hybrids between these two species. A third species, olive ridleys (Lepidochelys olivacea), is also known to hybridize although at a smaller scale. Here, we used restriction site-associated DNA sequencing (RAD-Seq) markers, mitogenomes, and satellite-telemetry to investigate the patterns of hybridization and introgression in the Brazilian sea turtle population and their relationship with the migratory behaviours between feeding and nesting aggregations. We also explicitly test if the mixing of two divergent genomes in sea turtle hybrids causes mitochondrial paternal leakage. We developed a new species-specific PCR-assay capable of detecting mitochondrial DNA (mtDNA) inheritance from both parental species and performed ultra-deep sequencing to estimate the abundance of each mtDNA type. Our results show that all adult hybrids are first generation (F1) and most display a loggerhead migratory behaviour. We detected paternal leakage in F1 hybrids and different proportions of mitochondria from maternal and paternal species. Although previous studies showed no significant fitness decrease in hatchlings, our results support genetically-related hybrid breakdown possibly caused by cytonuclear incompatibility. Further research on hybrids from other populations in addition to Brazil and between different species will show if backcross inviability and mitochondrial paternal leakage is observed across sea turtle species.


Assuntos
DNA Mitocondrial , Tartarugas , Animais , DNA Mitocondrial/genética , Tartarugas/genética , Mitocôndrias/genética , Evolução Biológica , Reação em Cadeia da Polimerase
3.
Sci Rep ; 10(1): 12847, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733067

RESUMO

Hybridization between sea turtle species occurs with particularly high frequency at two adjacent nesting areas in northeastern Brazil. To understand the outcomes of hybridization and their consequences for sea turtle conservation, we need to evaluate the extent of hybridization occurrence and possible deleterious effects in the hybrid progeny. Thus, we investigated the hypothesis of the existence of a new hybrid spot offshore of Brazil's northeastern coast. The Abrolhos Archipelago is surrounded by the largest and richest coral reefs in the South Atlantic and is known to be a nesting site for loggerhead turtles (Caretta caretta). In this study, we performed a multidisciplinary investigation into levels of hybridization in sea turtles and their reproductive output in the Abrolhos beaches. Genetic data from mitochondrial DNA (mtDNA) and six autosomal markers showed that there are first-generation hybrid females nesting in Abrolhos, resulting from crossings between hawksbill males (Eretmochelys imbricata) and loggerhead females, and backcrossed hatchlings from both parental species. The type and extent of hybridization were characterized using genomic data obtained with the 3RAD method, which confirmed backcrossing between F1 hybrids and loggerhead turtles. The reproductive output data of Abrolhos nests suggests a disadvantage of hybrids when compared to loggerheads. For the first time, we have shown the association between hybridization and low reproductive success, which may represent a threat to sea turtle conservation.


Assuntos
Cruzamentos Genéticos , Hibridização Genética , Reprodução , Tartarugas/genética , Tartarugas/fisiologia , Animais , Brasil , Conservação dos Recursos Naturais , DNA Mitocondrial , Análise de Dados , Espécies em Perigo de Extinção , Feminino , Genômica , Masculino , Comportamento de Nidação
4.
Gene ; 575(2 Pt 1): 233-43, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26341054

RESUMO

The GO-system is a DNA repair mechanism that prevents and corrects oxidative DNA damage. Formamidopyrimidine-DNA glycosylase (FPG/MutM) participates in this system, avoiding the mutagenic effects of 8-oxoguanine lesion into DNA. Corynebacterium pseudotuberculosis, the etiological agent of caseous lymphadenitis, is a facultative intracellular microorganism vulnerable to oxidative DNA damage. Since inefficiencies in the DNA damage repair system can lead to death, the characterization of repair genes may provide valuable molecular targets for caseous lymphadenitis therapy. The purposes of this study were to functionally characterize MutM1 and MutM2 proteins from C. pseudotuberculosis in silico, in vivo, and in vitro and to examine their role in the repair of 8-oxoguanine damage. In silico investigation revealed that both proteins have conserved domains typical of DNA glycosylases, such as DNA binding domains and DNA glycosylase/AP lyase catalytic domain. In comparison with the MutM protein of Escherichia coli, however, CpMutM2 was found to lack residues that are essential for recognizing and excising 8-oxoguanine damage. Molecular docking calculations have shown a native-like orientation of 8-oxoguanine at the CpMutM1 active site, while the same is not observed for CpMutM2, which seems to poorly interact with DNA. Surface charge analyses have corroborated this finding. Overexpression of CpMutM1 or CpMutM2 has toxic effects on E. coli strain BH20 (mutM-), as shown by growth curves obtained in the presence of hydrogen peroxide and cell viability assays. This cytotoxicity can be attributed to an imbalance in the repair pathway, resulting from hyperactivity of DNA glycosylases, leading to formation of AP sites and DNA strand breakage at levels that exceed the processing capacity of other enzymes in the BER pathway. In order to demonstrate the involvement of these enzymes in the recognition and excision of 8-oxoguanine lesion, glycosylase activity was evaluated in vitro. Only the CpMutM1 protein was proven to be capable of recognizing and excising 8-oxoguanine. Taken together, these results suggest that although the formamidopyrimidine-DNA glycosylase domain is conserved in both proteins, only one proved to be functional in recognizing and excising 8-oxoguanine lesion.


Assuntos
Proteínas de Bactérias , Corynebacterium pseudotuberculosis , DNA Bacteriano/metabolismo , DNA-Formamidopirimidina Glicosilase , Genoma Bacteriano , Guanina/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium pseudotuberculosis/enzimologia , Corynebacterium pseudotuberculosis/genética , DNA Bacteriano/genética , DNA-Formamidopirimidina Glicosilase/genética , DNA-Formamidopirimidina Glicosilase/metabolismo , Guanina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA