Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534388

RESUMO

The Sertoli cells (SeCs) of the seminiferous tubules secrete a multitude of immunoregulatory and trophic factors to provide immune protection and assist in the orderly development of germ cells. Grafts of naked or encapsulated SeCs have been proved to represent an interesting therapeutic option in a plethora of experimental models of diseases. However, whether SeCs have immunosuppressive or immunomodulatory effects, which is imperative for their clinical translatability, has not been demonstrated. We directly assessed the immunopotential of intraperitoneally grafted microencapsulated porcine SeCs (MC-SeCs) in murine models of fungal infection (Aspergillus fumigatus or Candida albicans) or cancer (Lewis lung carcinoma/LLC or B16 melanoma cells). We found that MC-SeCs (i) provide antifungal resistance with minimum inflammatory pathology through the activation of the tolerogenic aryl hydrocarbon receptor/indoleamine 2,3-dioxygenase pathway; (ii) do not affect tumor growth in vivo; and (iii) reduce the LLC cell metastatic cancer spread associated with restricted Vegfr2 expression in primary tumors. Our results point to the fine immunoregulation of SeCs in the relative absence of overt immunosuppression in both infection and cancer conditions, providing additional support for the potential therapeutic use of SeC grafts in human patients.


Assuntos
Carcinoma Pulmonar de Lewis , Células de Sertoli , Masculino , Humanos , Suínos , Animais , Camundongos , Células de Sertoli/metabolismo , Túbulos Seminíferos/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Imunossupressores/uso terapêutico , Tolerância Imunológica
2.
Front Endocrinol (Lausanne) ; 14: 1063916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065743

RESUMO

Lately, nickel oxide nanoparticles (NiO NPs) have been employed in different industrial and biomedical fields. Several studies have reported that NiO NPs may affect the development of reproductive organs inducing oxidative stress and, resulting in male infertility. We investigated the in vitro effects of NiO NPs on porcine pre-pubertal Sertoli cells (SCs) which undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposure at two subtoxic doses of NiO NPs of 1 µg/ml and 5 µg/ml. After NiO NPs exposure we performed the following analysis: (a) SCs morphological analysis (Light Microscopy); (b) ROS production and oxidative DNA damage, gene expression of antioxidant enzymes (c) SCs functionality (AMH, inhibin B Real-time PCR analysis and ELISA test); (d) apoptosis (WB analysis); (e) pro-inflammatory cytokines (Real-time PCR analysis), and (f) MAPK kinase signaling pathway (WB analysis). We found that the SCs exposed to both subtoxic doses of NiO NPs didn't sustain substantial morphological changes. NiO NPs exposure, at each concentration, reported a marked increase of intracellular ROS at the third week of treatment and DNA damage at all exposure times. We demonstrated, un up-regulation of SOD and HO-1 gene expression, at both concentrations tested. The both subtoxic doses of NiO NPs detected a down-regulation of AMH and inhibin B gene expression and secreted proteins. Only the 5 µg/ml dose induced the activation of caspase-3 at the third week. At the two subtoxic doses of NiO NPs a clear pro-inflammatory response was resulted in an up-regulation of TNF-α and IL-6 in terms of mRNA. Finally, an increased phosphorylation ratio of p-ERK1/2, p-38 and p-AKT was observed up to the third week, at both concentrations. Our results show the negative impact of subtoxic doses NiO NPs chronic exposure on porcine SCs functionality and viability.


Assuntos
Infertilidade Masculina , Nanopartículas , Masculino , Animais , Suínos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/metabolismo , Fatores de Risco
3.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047508

RESUMO

To evaluate whether the follicle-stimulating hormone (FSH) receptor (FSHR) is expressed in human spermatozoa and the effects of FSH incubation on sperm function. Twenty-four Caucasian men were recruited. Thirteen patients had asthenozoospermia, and the remaining 11 had normal sperm parameters (controls). After confirming FSHR expression, spermatozoa from patients and controls were incubated with increasing concentrations of human purified FSH (hpFSH) to reassess FSHR expression and localization and to evaluate progressive and total sperm motility, the mitochondrial membrane potential, and protein kinase B (AKT) 473 and 308 phosphorylation. FSHR is expressed in the post-acrosomal segment, neck, midpiece, and tail of human spermatozoa. Its localization does not differ between patients and controls. Incubation with hpFSH at a concentration of 30 mIU/mL appeared to increase FSHR expression mainly in patients. Incubation of human spermatozoa with hpFSH overall resulted in an overall deterioration of both progressive and total motility in patients and controls and worse mitochondrial function only in controls. Finally, incubation with FSH increased AKT473/tubulin phosphorylation to a greater extent than AKT308. FSHR is expressed in the post-acrosomal region, neck, midpiece, and tail of human spermatozoa. Contrary to a previous study, we report a negative effect of FSH on sperm motility and mitochondrial function. FSH also activates the AKT473 signaling pathway.


Assuntos
Hormônio Foliculoestimulante , Proteínas Proto-Oncogênicas c-akt , Humanos , Masculino , Hormônio Foliculoestimulante/farmacologia , Motilidade dos Espermatozoides , Sêmen/metabolismo , Hormônio Foliculoestimulante Humano/farmacologia , Receptores do FSH/metabolismo , Espermatozoides/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 962519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843583

RESUMO

Introduction: Among substances released into the environment by anthropogenic activities, the heavy metal cadmium (Cd) is known to induce severe testicular injury causing male subfertility/infertility. Zinc (Zn) is another heavy metal that, unlike Cd, is physiologically present in the testis, being essential for spermatogenesis. We aimed to examine the possibility that 50 µM ZnCl2 could counteract the toxic effects induced by Cd in an in vitro model of porcine prepubertal Sertoli cells (SCs) exposed to both subtoxic (5 µM) and toxic (10 µM) concentrations of CdCl2 for 48 h. Materials and Methods: Apoptosis, cell cycle, and cell functionality were assessed. The gene expression of Nrf2 and its downstream antioxidant enzymes, ERK1/2, and AKT kinase signaling pathways were evaluated. Materials and Results: We found that Zn, in co-treatment with subtoxic and toxic Cd concentration, increased the number of metabolically active SCs compared to Cd exposure alone but restored SC functionality only in co-treatment with subtoxic Cd concentration with respect to subtoxic Cd alone. Exposure of Cd disrupted cell cycle in SCs, and Zn co-treatment was not able to counteract this effect. Cd alone induced SC death through apoptosis and necrosis in a dose-dependent manner, and co-treatment with Zn increased the pro-apoptotic effect of Cd. Subtoxic and toxic Cd exposures activated the Nrf2 signaling pathway by increasing gene expression of Nrf2 and its downstream genes (SOD, HO-1, and GSHPx). Zn co-treatment with subtoxic Cd attenuated upregulation on the Nrf2 system, while with toxic Cd, the effect was more erratic. Studying ERK1/2 and AKT pathways as a target, we found that the phosphorylation ratio of p-ERK1/2 and p-AKT was upregulated by both subtoxic and toxic Cd exposure alone and in co-treatment with Zn. Discussion: Our results suggest that Zn could counteract Cd effects by increasing the number of metabolically active SCs, fully or partially restoring their functionality by modulating Nrf2, ERK1/2, and AKT pathways. Our SC model could be useful to study the effects of early Cd exposure on immature testis, evaluating the possible protective effects of Zn.


Assuntos
Cádmio , Zinco , Masculino , Animais , Suínos , Cádmio/toxicidade , Zinco/metabolismo , Células de Sertoli/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674712

RESUMO

Liposomes have been successfully used as drug-delivery vehicles, but there are no clinical studies on improved fertility and the few reported experimental studies have been performed in animal models far from humans. The aim of this paper was to study the effects of treatment with cationic, anionic and zwitterionic liposomes on our superior mammalian model of porcine prepubertal Sertoli cells (SCs) to find a carrier of in vitro test drugs for SCs. Porcine pre-pubertal SCs cultures were incubated with different liposomes. Viability, apoptosis/necrosis status (Annexin-V/Propidium iodide assay), immunolocalisation of ß-actin, vimentin, the phosphorylated form of AMP-activated protein Kinase (AMPK)α and cell ultrastructure (Transmission Electron Microscopy, TEM) were analysed. Zwitterionic liposomes did not determine changes in the cell cytoplasm. The incubation with anionic and cationic liposomes modified the distribution of actin and vimentin filaments and increased the levels of the phosphorylated form of AMPKα. The Annexin/Propidium Iodide assay suggested an increase in apoptosis. TEM analysis highlighted a cytoplasmic vacuolisation. In conclusion, these preliminary data indicated that zwitterionic liposomes were the best carrier to use in an in vitro study of SCs to understand the effects of molecules or drugs that could have a clinical application in the treatment of certain forms of male infertility.


Assuntos
Lipossomos , Células de Sertoli , Humanos , Masculino , Animais , Suínos , Lipossomos/química , Vimentina , Células de Sertoli/metabolismo , Propídio , Apoptose , Mamíferos/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 1010796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523595

RESUMO

Introduction: Insulin-like growth factor 2 (IGF2) mRNA has been found in human and mouse spermatozoa. It is currently unknown whether the IGF2 protein is expressed in human spermatozoa and, if so, its possible role in the cross-talk between germ and Sertoli cells (SCs) during spermatogenesis. Methods: To accomplish this, we analyzed sperm samples from four consecutive Caucasian men. Furthermore, to understand its role during the spermatogenetic process, porcine SCs were incubated with increasing concentrations (0.33, 3.33, and 10 ng/mL) of recombinant human IGF2 (rhIGF2) for 48 hours. Subsequently, the experiments were repeated by pre-incubating SCs with the non-competitive insulin-like growth factor 1 receptor (IGF1R) inhibitor NVP-AEW541. The following outcomes were evaluated: 1) Gene expression of the glial cell-line derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and stem cell factor (SCF) mitogens; 2) gene and protein expression of follicle-stimulating hormone receptor (FSHR), anti-Müllerian hormone (AMH), and inhibin B; 3) SC proliferation. Results: We found that the IGF2 protein was present in each of the sperm samples. IGF2 appeared as a cytoplasmic protein localized in the equatorial and post-acrosomal segment and with a varying degree of expression in each cell. In SCs, IGF2 significantly downregulated GDNF gene expression in a concentration-dependent manner. FGF2 and SCF were downregulated only by the highest concentration of IGF2. Similarly, IGF2 downregulated the FSHR gene and FSHR, AMH, and inhibin B protein expression. Finally, IGF2 significantly suppressed the SC proliferation rate. All these findings were reversed by pre-incubation with NVP-AEW541, suggesting an effect mediated by the interaction of IGF2 with the IGFR. Conclusion: In conclusion, sperm IGF2 seems to downregulate the expression of mitogens, which are known to be physiologically released by the SCs to promote gonocyte proliferation and spermatogonial fate adoption. These findings suggest the presence of paracrine regulatory mechanisms acting on the seminiferous epithelium during spermatogenesis, by which germ cells can influence the amount of mitogens released by the SCs, their sensitivity to FSH, and their rate of proliferation.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator de Crescimento Insulin-Like II , Células de Sertoli , Espermatogênese , Animais , Humanos , Masculino , Hormônio Antimülleriano/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Mitógenos/metabolismo , Sêmen , Células de Sertoli/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Espermatozoides/metabolismo , Suínos
7.
Front Endocrinol (Lausanne) ; 13: 877537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784573

RESUMO

Fertility preservation for prepubertal male patients undergoing gonadotoxic therapies, potentially depleting spermatogonial cells, is an expanding necessity, yet most of the feasible options are still in the experimental phase. We present our experience and a summary of current and novel possibilities regarding the different strategies to protect or restore fertility in young male patients, before proceeding with chemotherapy or radiotherapy for malignances or other diseases. Adult oncological patients should always be counselled to cryopreserve the semen before starting treatment, however this approach is not suitable for prepubertal boys, who aren't capable to produce sperm yet. Fortunately, since the survival rate of pediatric cancer patients has skyrocketed in the last decade and it's over 84%, safeguarding their future fertility is becoming a major concern for reproductive medicine. Surgical and medical approaches to personalize treatment or protect the gonads could be a valid first step to take. Testicular tissue autologous grafting or xenografting, and spermatogonial stem cells (SSCs) transplantation, are the main experimental options available, but spermatogenesis in vitro is becoming an intriguing alternative. All of these methods feature both strong and weak prospects. There is also relevant controversy regarding the type of testicular material to preserve and the cryopreservation methods. Since transplanted cells are bound to survive based on SSCs number, many ways to enrich their population in cultures have been proposed, as well as different sites of injection inside the testis. Testicular tissue graft has been experimented on mice, rabbits, rhesus macaques and porcine, allowing the birth of live offspring after performing intracytoplasmic sperm injection (ICSI), however it has never been performed on human males yet. In vitro spermatogenesis remains a mirage, although many steps in the right direction have been performed. The manufacturing of 3D scaffolds and artificial spermatogenetic niche, providing support to stem cells in cultures, seems like the best way to further advance in this field.


Assuntos
Preservação da Fertilidade , Neoplasias , Animais , Humanos , Macaca mulatta , Masculino , Camundongos , Neoplasias/terapia , Coelhos , Sêmen , Suínos , Testículo
8.
J Pineal Res ; 73(1): e12806, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35524288

RESUMO

Melatonin (MLT) is a cytoprotective agent holding potential to prevent cadmium (Cd) toxicity and its impact in testicular function and fertility. In this study, we explored such potential in porcine pre-pubertal Sertoli cells (SCs). Cd toxicity resulted in impaired SC viability and function, abnormal cellular H2 O2 generation and efflux, and induction of reductive stress by the upregulation of Nrf2 expression and activity, cystine uptake and glutathione biosynthesis, glutathione-S-transferase P (GSTP) expression, and protein glutathionylation inhibition. Cd toxicity also stimulated the activity of cellular kinases (MAPK-ERK1/2 and Akt) and NFkB transcription factor, and cJun expression was increased. MLT produced a potent cytoprotective effect when co-administered with Cd to SCs; its efficacy and the molecular mechanism behind its cytoprotective function varied according to Cd concentrations. However, a significant restoration of cell viability and function, and of H2 O2 levels, was observed both at 5 and 10 µM Cd. Mechanistically, these effects of MLT were associated with a significant reduction of the Cd-induced activation of Nrf2 and GSTP expression at all Cd concentrations. CAT and MAPK-ERK1/2 activity upregulation was associated with these effects at 5 µM Cd, whereas glutathione biosynthesis and efflux were involved at 10 µM Cd together with an increased expression of the cystine transporter xCT, of cJun and Akt and NFkB activity. MLT protects SCs from Cd toxicity reducing its H2 O2 generation and reductive stress effects. A reduced activity of Nrf2 and the modulation of other molecular players of MLT signaling, provide a mechanistic rational for the cytoprotective effect of this molecule in SCs.


Assuntos
Melatonina , Fator 2 Relacionado a NF-E2 , Animais , Cádmio/farmacologia , Cistina/metabolismo , Cistina/farmacologia , Glutationa/metabolismo , Masculino , Melatonina/metabolismo , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Sertoli/metabolismo , Suínos
9.
Data Brief ; 40: 107744, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35141363

RESUMO

Sertoli cells (SeC) isolated from porcine testes have shown direct effects on muscle precursor cells sustaining C2C12 myoblasts proliferation and inhibiting oxidative stress and apoptosis in the early phase of the differentiation process, and stimulating myoblast fusion into myotubes and the expression of markers of myogenic differentiation in the late phase. This suggested that the cocktail of factors secreted by SeC stimulates proliferation in myoblasts without weakening their myogenic potential resulting in the formation of the critical myoblast amount necessary to rebuild the required muscle mass upon a damage. Here, we show that co-culturing C2C12 myoblasts with high doses of SeC microencapsulated in clinical grade alginate-based microcapsules (MC-SeC) for three days in differentiation medium (DM) translates into increased cell numbers and almost absence of myotube formation. However, after removal of MC-SeC, an intense fusion activity into myotubes was observed culminating in a fusion index similar to that of control after additional three days of culture in DM. These data definitely demonstrate that SeC-derived factors preserve the myogenic potential while sustaining cell proliferation in C2C12 myoblasts.

10.
Biomolecules ; 11(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680138

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene translating in lack of functional dystrophin and resulting in susceptibility of myofibers to rupture during contraction. Inflammation and fibrosis are critical hallmarks of DMD muscles, which undergo progressive degeneration leading to loss of independent ambulation in childhood and death by early adulthood. We reported that intraperitoneal injection of microencapsulated Sertoli cells (SeC) in dystrophic mice translates into recovery of muscle morphology and performance thanks to anti-inflammatory effects and induction of the dystrophin paralogue, utrophin at the muscle level, opening new avenues in the treatment of DMD. The aim of this study is to obtain information about the direct effects of SeC on myoblasts/myotubes, as a necessary step in view of a translational application of SeC-based approaches to DMD. We show that (i) SeC-derived factors stimulate cell proliferation in the early phase of differentiation in C2C12, and human healthy and DMD myoblasts; (ii) SeC delay the expression of differentiation markers in the early phase nevertheless stimulating terminal differentiation in DMD myoblasts; (iii) SeC restrain the fibrogenic potential of fibroblasts, and inhibit myoblast-myofibroblast transdifferentiation; and, (iv) SeC provide functional replacement of dystrophin in preformed DMD myotubes regardless of the mutation by inducing heregulin ß1/ErbB2/ERK1/2-dependent utrophin expression. Altogether, these results show that SeC are endowed with promyogenic and antifibrotic effects on dystrophic myoblasts, further supporting their potential use in the treatment of DMD patients. Our data also suggest that SeC-based approaches might be useful in improving the early phase of muscle regeneration, during which myoblasts have to adequately proliferate to replace the damaged muscle mass.


Assuntos
Distrofia Muscular de Duchenne/genética , Neuregulina-1/genética , Receptor ErbB-2/genética , Células de Sertoli/metabolismo , Utrofina/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Transdiferenciação Celular/genética , Modelos Animais de Doenças , Distrofina/genética , Regulação da Expressão Gênica/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Injeções Intraperitoneais , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mioblastos/metabolismo , Regeneração/genética , Células de Sertoli/patologia
11.
Front Endocrinol (Lausanne) ; 12: 694796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093450

RESUMO

The incidence of cancer in pre-pubertal boys has significantly increased and, it has been recognized that the gonado-toxic effect of the cancer treatments may lead to infertility. Here, we have evaluated the effects on porcine neonatal Sertoli cells (SCs) of three commonly used chemotherapy drugs; cisplatin, 4-Hydroperoxycyclophosphamide and doxorubicin. All three drugs induced a statistical reduction of 5-hydroxymethylcytosine in comparison with the control group, performed by Immunofluorescence Analysis. The gene and protein expression levels of GDNF, were significantly down-regulated after treatment to all three chemotherapy drugs comparison with the control group. Specifically, differences in the mRNA levels of GDNF were: 0,8200 ± 0,0440, 0,6400 ± 0,0140, 0,4400 ± 0,0130 fold change at 0.33, 1.66, and 3.33µM cisplatin concentrations, respectively (**p < 0.01 at 0.33 and 1.66 µM vs SCs and ***p < 0.001 at 3.33µM vs SCs); 0,6000 ± 0,0340, 0,4200 ± 0,0130 fold change at 50 and 100 µM of 4-Hydroperoxycyclophosphamide concentrations, respectively (**p < 0.01 at both these concentrations vs SCs); 0,7000 ± 0,0340, 0,6200 ± 0,0240, 0,4000 ± 0,0230 fold change at 0.1, 0.2 and 1 µM doxorubicin concentrations, respectively (**p < 0.01 at 0.1 and 0.2 µM vs SCs and ***p < 0.001 at 1 µM vs SCs). Differences in the protein expression levels of GDNF were: 0,7400 ± 0,0340, 0,2000 ± 0,0240, 0,0400 ± 0,0230 A.U. at 0.33, 1.66, and 3.33µM cisplatin concentrations, respectively (**p < 0.01 at both these concentrations vs SCs); 0,7300 ± 0,0340, 0,4000 ± 0,0130 A.U. at 50 and 100 µM of 4- Hydroperoxycyclophosphamide concentrations, respectively (**p < 0.01 at both these concentrations vs SCs); 0,6200 ± 0,0340, 0,4000 ± 0,0240, 0,3800 ± 0,0230 A.U. at 0.l, 0.2 and 1 µM doxorubicin concentrations, respectively (**p < 0.01 at 0.1 and 0.2 µM vs SCs and ***p < 0.001 at 1 µM vs SCs). Furthermore, we have demonstrated the protective effect of eicosapentaenoic acid on SCs only at the highest concentration of cisplatin, resulting in an increase in both gene and protein expression levels of GDNF (1,3400 ± 0,0280 fold change; **p < 0.01 vs SCs); and of AMH and inhibin B that were significantly recovered with values comparable to the control group. Results from this study, offers the opportunity to develop future therapeutic strategies for male fertility management, especially in pre-pubertal boys.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ácido Eicosapentaenoico/farmacologia , Preservação da Fertilidade/métodos , Células de Sertoli/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Sobreviventes de Câncer , Células Cultivadas , Criança , Cisplatino/efeitos adversos , Ácido Eicosapentaenoico/uso terapêutico , Fertilidade/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Gônadas/patologia , Humanos , Masculino , Células de Sertoli/citologia , Células de Sertoli/fisiologia , Suínos
12.
Front Endocrinol (Lausanne) ; 12: 751915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046890

RESUMO

The increasing use of nanomaterials in a variety of industrial, commercial, medical products, and their environmental spreading has raised concerns regarding their potential toxicity on human health. Titanium dioxide nanoparticles (TiO2 NPs) represent one of the most commonly used nanoparticles. Emerging evidence suggested that exposure to TiO2 NPs induced reproductive toxicity in male animals. In this in vitro study, porcine prepubertal Sertoli cells (SCs) have undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposures at both subtoxic (5 µg/ml) and toxic (100 µg/ml) doses of TiO2 NPs. After performing synthesis and characterization of nanoparticles, we focused on SCs morphological/ultrastructural analysis, apoptosis, and functionality (AMH, inhibin B), ROS production and oxidative DNA damage, gene expression of antioxidant enzymes, proinflammatory/immunomodulatory cytokines, and MAPK kinase signaling pathway. We found that 5 µg/ml TiO2 NPs did not induce substantial morphological changes overtime, but ultrastructural alterations appeared at the third week. Conversely, SCs exposed to 100 µg/ml TiO2 NPs throughout the whole experiment showed morphological and ultrastructural modifications. TiO2 NPs exposure, at each concentration, induced the activation of caspase-3 at the first and second week. AMH and inhibin B gene expression significantly decreased up to the third week at both concentrations of nanoparticles. The toxic dose of TiO2 NPs induced a marked increase of intracellular ROS and DNA damage at all exposure times. At both concentrations, the increased gene expression of antioxidant enzymes such as SOD and HO-1 was observed whereas, at the toxic dose, a clear proinflammatory stress was evaluated along with the steady increase in the gene expression of IL-1α and IL-6. At both concentrations, an increased phosphorylation ratio of p-ERK1/2 was observed up to the second week followed by the increased phosphorylation ratio of p-NF-kB in the chronic exposure. Although in vitro, this pilot study highlights the adverse effects even of subtoxic dose of TiO2 NPs on porcine prepubertal SCs functionality and viability and, more importantly, set the basis for further in vivo studies, especially in chronic exposure at subtoxic dose of TiO2 NPs, a condition closer to the human exposure to this nanoagent.


Assuntos
Nanopartículas Metálicas/toxicidade , Células de Sertoli/efeitos dos fármacos , Titânio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Masculino , Tamanho da Partícula , Células de Sertoli/patologia , Transdução de Sinais/efeitos dos fármacos , Sus scrofa
13.
Artigo em Inglês | MEDLINE | ID: mdl-32625170

RESUMO

Follicle-stimulating hormone (FSH), a major regulator of spermatogenesis, has a crucial function in the development and function of the testis and it is extensively given as a fertility treatment to stimulate spermatogenesis. We analyzed the effects of different FSH preparations (α-follitropin, ß-follitropin, and urofollitropin) in combination with testosterone on porcine pre-pubertal Sertoli cells. To study the effect of the different FSH treatments in the Sertoli cell function we performed Real Time PCR analysis of AMH, inhibin B, and FSH-r, an ELISA assay for AMH and inhibin B, and a high-throughput comparative proteomic analysis. We verified that all three preparations induced a reduction of AMH in terms of mRNA and secreted proteins, and an increase of inhibin B in terms of mRNA in all the FSH formulations, while solely α-follitropin produced an increase of secreted inhibin B in the culture medium. Comparative proteomic analysis of the three FSH preparations identified 46 proteins, 11 up-regulated and 2 down-regulated. Surprisingly, the combination of testosterone with ß-follitropin specifically induced an up-regulation of eight specific secreted proteins. Our study, showing that the three different FSH preparations induce different effects, could offer the opportunity to shed light inside new applications to a personalized reproductive medicine.


Assuntos
Hormônio Foliculoestimulante/administração & dosagem , Infertilidade Masculina/fisiopatologia , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/fisiologia , Animais , Células Cultivadas , Infertilidade Masculina/terapia , Masculino , Medicina de Precisão , Proteômica , Células de Sertoli/metabolismo , Sus scrofa , Testosterona/administração & dosagem
14.
Toxicol In Vitro ; 67: 104882, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32423882

RESUMO

Smoke components, such as nicotine and its major metabolites, cross the blood-testis barrier and are detectable in the seminal plasma of both active smokers and individuals exposed to cigarette smoke. In vivo studies in a rat model have further demonstrated that nicotine exposure reduces the weight of the testis, as well as the number of spermatocytes and spermatids, and affects the ultrastructure of Sertoli cells (SC) - which serve as sentinels of spermatogenesis - causing intense germ cell sloughing in the tubular lumen that compromises offspring fertility. This study sought to determine the effects of nicotine on the viability and function of purified pig pre-pubertal SC. Nicotine exposure reduced the mRNA expression and protein levels of anti-Mullerian hormone (AMH) and inhibin B and impaired FSH-r sensitivity via the downregulation of FSH-r and aromatase gene expression compared to untreated SC. Overall, our study suggests that nicotine can significantly alter extracellular matrix and tight junction protein gene expression (e.g., laminin, integrin, and occludin), thus compromising cross-talk between the interstitial and tubular compartments and enhancing blood-testis barrier (BTB) permeability via downregulation of the mitogen-activated protein kinase (MAPK) pathway. These findings further elucidate a potential mechanism of action underlying nicotine exposure's detrimental effects on SC function in vivo.


Assuntos
Nicotina/toxicidade , Células de Sertoli/efeitos dos fármacos , Animais , Hormônio Antimülleriano/genética , Apoptose/efeitos dos fármacos , Aromatase/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibinas/genética , Integrinas/genética , Laminina/genética , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Receptores do FSH/genética , Células de Sertoli/metabolismo , Maturidade Sexual , Suínos
15.
Front Endocrinol (Lausanne) ; 11: 611932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488524

RESUMO

Sertoli cells (SC) are immune privileged cells with the capacity of modulating the immune response by expressing several immune-regulatory factors. SC have the capacity to respond to external stimuli through innate phagocytic and antibacterial activities. This evidence evoked a potential role of SC as drug carriers and therapeutic agents. Such stimuli drive SC towards a still unknown evolution, the clinical relevance of which as yet remains undisclosed. This study sought to investigate the effects of external stimuli in the form of polymeric microparticles (MP) and bacteria derived endotoxins, such as lipopolysaccharides (LPS), in order to identify the pathways potentially involved in cell phenotype modifications. Compared to single stimulation, when combined, MP and LPS provoked a significant increase in the gene expression of IDO, PD-L1, FAS-L, TLR-3, TLR-4, MHC-II, ICAM-1, TFGß1, BDF123, BDF129, BDF3 and pEP2C. Western Blotting analysis demonstrated up-regulation of the ERK 1-2 and NF-kB p65 phosphorylation ratios. Our study, showing the exponential increase of these mediators upon combined MP and LPS stimulation, suggests a "switch" of SC function from typical cells of the blood-testicular barrier to nonprofessional tolerogenic antigen-presenting cells. Further studies should target the clinical and technological implications of such stimuli-induced SC transformation.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Líquido Intracelular/metabolismo , Lipopolissacarídeos/toxicidade , Células de Sertoli/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Líquido Intracelular/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suínos , Fator de Necrose Tumoral alfa/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-31244770

RESUMO

Human primordial germ cells (PGCs) have been described in the yolk sac wall around the beginning of the third week. From week 4 to 5, they migrate under control of SCF/c-KIT signaling pathway to the genital ridge, where they become gonocytes. PGCs and gonocytes express classic pluripotency markers, such as KIT, NANOG, and OCT3/4 that, during spermatogonia differentiation, are gradually suppressed, and substituted by the expression of some germ cell specific genes, such as VASA, SOX17, and TSPY. These genes, during normal development of germ cells, are tightly regulated by epigenetic modification, in terms of microRNA expression and DNA methylation. In adolescents and young adults, testicular germ cell tumors (TGCT) have a common precursor, the germ cell neoplasia in situ (GCNIS); the hypothesis of their origin from PGCs or gonocytes, whose maturation is altered, is widely accepted. The origin of TGCT, probably starting at early stages of embryogenesis, seems to be a part of the Testicular Dysgenesis Syndrome (TDS) where some early PGC/gonocytes, for still unclear reasons, are blocked in their differentiation, retaining their early marker profile. In this paper, current knowledge on the combination of epidemiological and genomic factors, involved in the development of testicular germ cell tumors, is reviewed.

17.
J Clin Med ; 8(6)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174276

RESUMO

There is ongoing debate as to whether the decline of sperm production in recent times may be related to a parallel increase in the rate of obesity and diabetes. Lower anti-Müllerian hormone (AMH) and inhibin B secretion have been observed in young hyperinsulinemic patients compared to healthy controls, suggesting a Sertoli cell (SC) dysfunction. The pathophysiological mechanisms underlying SC dysfunction in these patients are poorly understood. To the best of our knowledge, no evidence is available on the effects of insulin on SC function. Therefore, this study was undertaken to assess the effects of insulin on basal and follicle-stimulating hormone (FSH)-stimulated SC function in vitro. To accomplish this, we evaluated the expression of AMH, inhibin B and FSHR genes, the secretion of AMH and inhibin B and the phosphorylation of AKT473 and SC proliferation on neonatal porcine SC after incubation with FSH and/or insulin. We found that similar to FSH, the expression and secretion of AMH is suppressed by insulin. Co-incubation with FSH and insulin decreased AMH secretion significantly more than with FSH alone. Insulin had no effect on the expression and secretion of the inhibin B gene, but co-incubation with FSH and insulin had a lower effect on inhibin B secretion than that found with FSH alone. FSH and/or insulin increased AKT473 phosphorylation and SC proliferation. In conclusion, the results of this study showed that insulin modulates SC function. We hypothesize that hyperinsulinemia may therefore influence testicular function even before puberty begins. Therefore, particular care should be taken to avoid the onset of hyperinsulinemia in children to prevent a future deleterious effect on fertility.

18.
J Clin Med ; 8(6)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174315

RESUMO

Several lines of evidence suggest that insulin-like growth factor 1 (IGF1) is involved in Sertoli cell (SC) proliferation and that its receptor (IGF1R) could mediate follicle-stimulating hormone (FSH) effects. To examine the role of the growth hormone (GH)-IGF1 axis on SC function, we evaluated the effects of GH and IGF1 on basal and FSH-modulated SC proliferation, as well as on anti-Müllerian hormone (AMH) and inhibin B expression and secretion in-vitro. SCs from neonatal pigs were incubated with (1) placebo, (2) 100 nM highly purified urofollitropin (hpFSH), (3) 100 nM recombinant GH (rGH), (4) 100 nM recombinant IGF1 (rIGF1), (5) 100 nM hpFSH plus 100 nM rGH, (6) 100 nM hpFSH plus 100 nM rIGF1, for 48 h. We found that IGF1, but not FSH nor GH, stimulated SC proliferation. Furthermore, an inhibitory effect of FSH, GH and IGF1 on AMH secretion, and a stimulatory role of FSH and IGF1, but not GH, on inhibin B secretion were found. These results suggest that the GH-IGF1 axis influences basal and FSH-modulated SC proliferation and function. We speculate that SC proliferation occurring in childhood might be supported by the increased serum IGF1 levels observed during this period of life.

19.
J Clin Med ; 8(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035547

RESUMO

Experimental evidence has shown that the IGF1 receptor (IGF1R) is involved in testicular development during embryogenesis. More recently, data gathered from mice granulosa cells and zebrafish spermatogonia suggest that IGF1R has a role in Follicle-stimulating hormone (FSH) signaling. No evidence has been reported on this matter in Sertoli cells (SCs) so far. The aim of the study was to evaluate the role, if any, of the IGF1R in FSH signaling in SCs. The effects of FSH exposure on myosin-phosphatase 1 (MYPT1), ERK 1/2, AKT308, AKT473, c-Jun N-terminal kinase (JNK) phosphorylation and on anti-Müllerian hormone (AMH), inhibin B and FSH receptor (FSHR) mRNA levels were assessed with and without the IGF1R inhibitor NVP-AEW541 in purified and functional porcine neonatal SCs. Pre-treatment with NVP-AEW541 inhibited the FSH-induced MYPT1 and ERK 1/2 phosphorylation, decreased the FSH-dependent Protein kinase B (AKT)308 phosphorylation, but did not affect the FSH-induced AKT473 and JNK phosphorylation rate. It also interfered with the FSH-induced AMH and FSHR down-regulation. No influence was observed on the FSH-stimulated Inhibin B gene expression. Conclusion. These findings support the role of theIGF1R in FSH signaling in porcine SCs. The possible influence of IGF1 stimulation on the FSH-mediated effects on SCs should be further explored.

20.
Am J Pathol ; 188(11): 2553-2563, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125541

RESUMO

Because Sertoli cells (SCs) play a central role in germ cell survival, their death may result in marked germ cell loss and infertility. SCs are the only somatic cells within the seminiferous tubules and are essential for regulating spermatogenesis. Factors that enhance or diminish the viability of SCs may have profound effects on spermatogenesis. Yet the mechanisms underlying the maintenance of SC viability remain largely unknown. Glyoxalase 1 (Glo1) detoxifies methylglyoxal (MG), a highly reactive carbonyl species mainly formed during glycolysis, which is a potent precursor of cytotoxic advanced glycation end products (AGEs). Hydroimidazolone (MG-H1) and argpyrimidine (ArgPyr) are AGEs resulting from MG-mediated post-translational modification of arginine residues in various proteins. The role of Glo1 and MG-derived AGEs in regulating the fate of SCs has never been investigated. By using gene silencing and the specific MG scavenger, aminoguanidine, the authors demonstrate that Glo1, under testosterone and follicle-stimulating hormone control, sustains viability of porcine neonatal SCs through a mechanism involving the NF-κB pathway. Glo1 knockdown induces a mitochondrial apoptotic pathway driven by the intracellular accumulation of MG-H1 and ArgPyr that desensitizes NF-κB signaling by modifying the inhibitor of NF-κB kinase, IKKß. This is the first report describing a role for Glo1 and MG-derived AGEs in SC biology, providing valuable new insights into the potential involvement of this metabolic axis into spermatogenesis.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Lactoilglutationa Liase/metabolismo , Ornitina/análogos & derivados , Pirimidinas/farmacologia , Células de Sertoli/citologia , Testosterona/metabolismo , Animais , Lactoilglutationa Liase/genética , Masculino , Ornitina/farmacologia , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA