Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 225: 116322, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815630

RESUMO

Xenobiotic metabolic reactions in the hepatocyte endoplasmic reticulum (ER) including UDP-glucuronosyltransferase and carboxylesterase play central roles in the detoxification of medical agents with small- and medium-sized molecules. Although the catalytic sites of these enzymes exist inside of ER, the molecular mechanism for membrane permeation in the ER remains enigmatic. Here, we investigated that organic anion transporter 2 (OAT2) regulates the detoxification reactions of xenobiotic agents including anti-cancer capecitabine and antiviral zidovudine, via the permeation process across the ER membrane in the liver. Pharmacokinetic studies in patients with colorectal cancer revealed that the half-lives of capecitabine in rs2270860 (1324C > T) variants was 1.4 times higher than that in the C/C variants. Moreover, the hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine in primary cultured human hepatocytes was reduced by OAT2 inhibitor ketoprofen, whereas capecitabine hydrolysis directly assessed in human liver microsomes were not affected. The immunostaining of OAT2 was merged with ER marker calnexin in human liver periportal zone. These results suggested that OAT2 is involved in distribution of capecitabine into ER. Furthermore, we clarified that OAT2 plays an essential role in drug-drug interactions between zidovudine and valproic acid, leading to the alteration in zidovudine exposure to the body. Our findings contribute to mechanistically understanding medical agent detoxification, shedding light on the ER membrane permeation process as xenobiotic metabolic machinery to improve chemical changes in hydrophilic compounds.


Assuntos
Retículo Endoplasmático , Humanos , Retículo Endoplasmático/metabolismo , Interações Medicamentosas/fisiologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Masculino , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Zidovudina/metabolismo , Zidovudina/farmacocinética , Feminino , Microssomos Hepáticos/metabolismo
2.
Sci Rep ; 11(1): 5437, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686099

RESUMO

Examining intestine-liver interactions is important for achieving the desired physiological drug absorption and metabolism response in in vitro drug tests. Multi-organ microphysiological systems (MPSs) constitute promising tools for evaluating inter-organ interactions in vitro. For coculture on MPSs, normal cells are challenging to use because they require complex maintenance and careful handling. Herein, we demonstrated the potential of coculturing normal cells on MPSs in the evaluation of intestine-liver interactions. To this end, we cocultured human-induced pluripotent stem cell-derived intestinal cells and fresh human hepatocytes which were isolated from PXB mice with medium circulation in a pneumatic-pressure-driven MPS with pipette-friendly liquid-handling options. The cytochrome activity, albumin production, and liver-specific gene expressions in human hepatocytes freshly isolated from a PXB mouse were significantly upregulated via coculture with hiPS-intestinal cells. Our normal cell coculture shows the effects of the interactions between the intestine and liver that may occur in vivo. This study is the first to demonstrate the coculturing of hiPS-intestinal cells and fresh human hepatocytes on an MPS for examining pure inter-organ interactions. Normal-cell coculture using the multi-organ MPS could be pursued to explore unknown physiological mechanisms of inter-organ interactions in vitro and investigate the physiological response of new drugs.


Assuntos
Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Animais , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Pressão
3.
Biotechnol Bioeng ; 118(10): 3716-3732, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33404112

RESUMO

Maturation of human-induced pluripotent stem cells (hiPSCs)-derived hepatocytes-like cells (HLCs) toward a complete hepatocyte phenotype remains a challenge as primitiveness patterns are still commonly observed. In this study, we propose a modified differentiation protocol for those cells which includes a prematuration in Petri dishes and a maturation in microfluidic biochip. For the first time, a large range of biomolecular families has been extracted from the same sample to combine transcriptomic, proteomic, and metabolomic analysis. After integration, these datasets revealed specific molecular patterns and highlighted the hepatic regeneration profile in biochips. Overall, biochips exhibited processes of cell proliferation and inflammation (via TGFB1) coupled with anti-fibrotic signaling (via angiotensin 1-7, ATR-2, and MASR). Moreover, cultures in this condition displayed physiological lipid-carbohydrate homeostasis (notably via PPAR, cholesterol metabolism, and bile synthesis) coupled with cell respiration through advanced oxidative phosphorylation (through the overexpression of proteins from the third and fourth complex). The results presented provide an original overview of the complex mechanisms involved in liver regeneration using an advanced in vitro organ-on-chip technology.


Assuntos
Diferenciação Celular , Genômica , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Regeneração Hepática , Fígado/metabolismo , Proteômica , Humanos
4.
Differentiation ; 114: 36-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32563741

RESUMO

The capability to produce and maintain functional human adult hepatocytes remains one of the major challenges for the use of in-vitro models toward liver cell therapy and industrial drug-screening applications. Among the suggested strategies to solve this issue, the use of human-induced pluripotent stem cells (hiPSCs), differentiated toward hepatocyte-like cells (HLCs) is promising. In this work, we propose a 31-day long protocol, that includes a final 14-day long phase of oncostatin treatment, as opposed to a 7-day treatment which led to the formation of a hepatic tissue functional for CYP1A2, CYP2B6, CYP2C8, CYP2D6, and CYP3A4. The production of albumin, as well as bile acid metabolism and transport, were also detected. Transcriptome profile comparisons and liver transcription factors (TFs) motif dynamics revealed increased expression of typical hepatic markers such as HNF1A and of important metabolic markers like PPARA. The performed analysis has allowed for the extraction of potential targets and pathways which would allow enhanced hepatic maturation in-vitro. From this investigation, NRF1 and SP3 appeared as transcription factors of importance. Complex epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) patterns were also observed during the differentiation process. Moreover, whole transcriptome analysis highlighted a response typical of the one observed in liver regeneration and hepatocyte proliferation. While a complete maturation of hepatocytes was yet to be obtained, the results presented in this work provide new insights into the process of liver development and highlight potential targets aimed to improve in-vitro liver regeneration.


Assuntos
Diferenciação Celular/genética , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Regeneração Hepática , Fígado/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Avaliação Pré-Clínica de Medicamentos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fator 1 Nuclear Respiratório/genética , Oncostatina M/farmacologia , Fator de Transcrição Sp3/genética , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA