Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
medRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38946973

RESUMO

Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmune disorders and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined. Here, we report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS. We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. We then report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints. Analysis of the first 10 participants to complete the 16-week study shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS. ClinicalTrials.gov identifier: NCT04246372 .

2.
Nat Commun ; 15(1): 5473, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942750

RESUMO

Individuals with Down syndrome, the genetic condition caused by trisomy 21, exhibit strong inter-individual variability in terms of developmental phenotypes and diagnosis of co-occurring conditions. The mechanisms underlying this variable developmental and clinical presentation await elucidation. We report an investigation of human chromosome 21 gene overexpression in hundreds of research participants with Down syndrome, which led to the identification of two major subsets of co-expressed genes. Using clustering analyses, we identified three main molecular subtypes of trisomy 21, based on differential overexpression patterns of chromosome 21 genes. We subsequently performed multiomics comparative analyses among subtypes using whole blood transcriptomes, plasma proteomes and metabolomes, and immune cell profiles. These efforts revealed strong heterogeneity in dysregulation of key pathophysiological processes across the three subtypes, underscored by differential multiomics signatures related to inflammation, immunity, cell growth and proliferation, and metabolism. We also observed distinct patterns of immune cell changes across subtypes. These findings provide insights into the molecular heterogeneity of trisomy 21 and lay the foundation for the development of personalized medicine approaches for the clinical management of Down syndrome.


Assuntos
Cromossomos Humanos Par 21 , Síndrome de Down , Síndrome de Down/genética , Síndrome de Down/imunologia , Humanos , Cromossomos Humanos Par 21/genética , Feminino , Transcriptoma , Masculino , Criança , Pré-Escolar , Adulto , Perfilação da Expressão Gênica , Proteoma/metabolismo , Adolescente
3.
J Peripher Nerv Syst ; 28(3): 460-470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37341347

RESUMO

BACKGROUND AND AIMS: The lack of easily measurable biomarkers remains a challenge in executing clinical trials for diabetic neuropathy (DN). Plasma Neurofilament light chain (NFL) concentration is a promising biomarker in immune-mediated neuropathies. Longitudinal studies evaluating NFL in DN have not been performed. METHODS: A nested case-control study was performed on participants with youth-onset type 2 diabetes enrolled in the prospective Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study. Plasma NFL concentrations were measured at 4-year intervals from 2008 to 2020 in 50 participants who developed DN and 50 participants with type 2 diabetes who did not develop DN. RESULTS: NFL concentrations were similar in the DN and no DN groups at the first assessment. Concentrations were higher in DN participants at all subsequent assessment periods (all p < .01). NFL concentrations increased over time in both groups, with higher degrees of change in DN participants (interaction p = .045). A doubling of the NFL value at Assessment 2 in those without DN increased the odds of ultimate DN outcome by an estimated ratio of 2.86 (95% CI: [1.30, 6.33], p = .0046). At the final study visit, positive Spearman correlations (controlled for age, sex, diabetes duration, and BMI) were observed between NFL and HbA1c (0.48, p < .0001), total cholesterol (0.25, p = .018), and low-density lipoprotein (LDL (0.30, p = .0037)). Negative correlations were observed with measures of heart rate variability (-0.42 to -0.46, p = <.0001). INTERPRETATION: The findings that NFL concentrations are elevated in individuals with youth-onset type 2 diabetes, and increase more rapidly in those who develop DN, suggest that NFL could be a valuable biomarker for DN.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Humanos , Adolescente , Estudos de Casos e Controles , Filamentos Intermediários , Proteínas de Neurofilamentos , Biomarcadores
4.
Sci Adv ; 9(26): eadg6218, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379383

RESUMO

Individuals with Down syndrome (DS) display chronic hyperactivation of interferon signaling. However, the clinical impacts of interferon hyperactivity in DS are ill-defined. Here, we describe a multiomics investigation of interferon signaling in hundreds of individuals with DS. Using interferon scores derived from the whole blood transcriptome, we defined the proteomic, immune, metabolic, and clinical features associated with interferon hyperactivity in DS. Interferon hyperactivity associates with a distinct proinflammatory phenotype and dysregulation of major growth signaling and morphogenic pathways. Individuals with the highest interferon activity display the strongest remodeling of the peripheral immune system, including increased cytotoxic T cells, B cell depletion, and monocyte activation. Interferon hyperactivity accompanies key metabolic changes, most prominently dysregulated tryptophan catabolism. High interferon signaling stratifies a subpopulation with elevated rates of congenital heart disease and autoimmunity. Last, a longitudinal case study demonstrated that JAK inhibition normalizes interferon signatures with therapeutic benefit in DS. Together, these results justify the testing of immune-modulatory therapies in DS.


Assuntos
Síndrome de Down , Humanos , Síndrome de Down/tratamento farmacológico , Síndrome de Down/complicações , Síndrome de Down/genética , Proteômica , Interferons/metabolismo , Autoimunidade , Transdução de Sinais/genética
5.
Nat Genet ; 55(6): 1034-1047, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277650

RESUMO

Down syndrome (DS), the genetic condition caused by trisomy 21, is characterized by variable cognitive impairment, immune dysregulation, dysmorphogenesis and increased prevalence of diverse co-occurring conditions. The mechanisms by which trisomy 21 causes these effects remain largely unknown. We demonstrate that triplication of the interferon receptor (IFNR) gene cluster on chromosome 21 is necessary for multiple phenotypes in a mouse model of DS. Whole-blood transcriptome analysis demonstrated that IFNR overexpression associates with chronic interferon hyperactivity and inflammation in people with DS. To define the contribution of this locus to DS phenotypes, we used genome editing to correct its copy number in a mouse model of DS, which normalized antiviral responses, prevented heart malformations, ameliorated developmental delays, improved cognition and attenuated craniofacial anomalies. Triplication of the Ifnr locus modulates hallmarks of DS in mice, suggesting that trisomy 21 elicits an interferonopathy potentially amenable to therapeutic intervention.


Assuntos
Síndrome de Down , Cardiopatias Congênitas , Animais , Camundongos , Síndrome de Down/genética , Receptores de Interferon/genética , Interferons , Fenótipo , Modelos Animais de Doenças
6.
Front Immunol ; 14: 1113932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817450

RESUMO

Introduction: The emergence of SARS-CoV-2, which causes COVID-19, has led to over 400 million reported cases worldwide. COVID-19 disease ranges from asymptomatic infection to severe disease and may be impacted by individual immune differences. Methods: We used multiparameter flow cytometry to compare CD4+ and CD8+ T cell responses in severe (ICU admitted) and non-severe (admitted to observational unit) hospitalized COVID-19 patients. Results: We found that patients with severe COVID- 19 had greater frequencies of CD4+ T cells expressing CD62L compared to non-severe patients and greater frequencies of perforin+ CD8+ T cells compared to recovered patients. Furthermore, greater frequencies of CD62L+ CD4+ and CD8+ T cells were seen in severely ill diabetic patients compared to non-severe and non-diabetic patients, and increased CD62L+ CD4+ T cells were also seen in severely ill patients with hypertension. Discussion: This is the first report to show that CD62L+ T cells and perforin+ T cells are associated with severe COVID-19 illness and are significantly increased in patients with high-risk pre-existing conditions including older age and diabetes. These data provide a potential biological marker for severe COVID-19.


Assuntos
COVID-19 , Humanos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Perforina , SARS-CoV-2 , Gravidade do Paciente , Selectina L/imunologia
7.
Cell Rep ; 41(13): 111883, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577365

RESUMO

Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by stunted growth, cognitive impairment, and increased risk of diverse neurological conditions. Although signs of lifelong neurodegeneration are well documented in DS, the mechanisms underlying this phenotype await elucidation. Here we report a multi-omics analysis of neurodegeneration and neuroinflammation biomarkers, plasma proteomics, and immune profiling in a diverse cohort of more than 400 research participants. We identified depletion of insulin growth factor 1 (IGF1), a master regulator of growth and brain development, as the top biosignature associated with neurodegeneration in DS. Individuals with T21 display chronic IGF1 deficiency downstream of growth hormone production, associated with a specific inflammatory profile involving elevated tumor necrosis factor alpha (TNF-α). Shorter children with DS show stronger IGF1 deficiency, elevated biomarkers of neurodegeneration, and increased prevalence of autism and other conditions. These results point to disruption of IGF1 signaling as a potential contributor to stunted growth and neurodegeneration in DS.


Assuntos
Síndrome de Down , Humanos , Biomarcadores/metabolismo , Síndrome de Down/genética , Transtornos do Crescimento/genética , Fator de Crescimento Insulin-Like I/genética
8.
Proc Natl Acad Sci U S A ; 119(11)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217532

RESUMO

The impacts of interferon (IFN) signaling on COVID-19 pathology are multiple, with both protective and harmful effects being documented. We report here a multiomics investigation of systemic IFN signaling in hospitalized COVID-19 patients, defining the multiomics biosignatures associated with varying levels of 12 different type I, II, and III IFNs. The antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage and platelet activation associate with high levels of IFNB1 and IFNA6. Seroconversion and time since hospitalization associate with a significant decrease in a specific subset of IFNs. Additionally, differential IFN subtype production is linked to distinct constellations of circulating myeloid and lymphoid immune cell types. Each IFN has a unique metabolic signature, with IFNG being the most associated with activation of the kynurenine pathway. IFNs also show differential relationships with clinical markers of poor prognosis and disease severity. For example, whereas IFNG has the strongest association with C-reactive protein and other immune markers of poor prognosis, IFNB1 associates with increased neutrophil to lymphocyte ratio, a marker of late severe disease. Altogether, these results reveal specialized IFN action in COVID-19, with potential diagnostic and therapeutic implications.


Assuntos
Sangue/metabolismo , COVID-19/imunologia , Interferons/sangue , Proteoma , Transcriptoma , COVID-19/sangue , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Humanos , Pacientes Internados
9.
Cell Rep ; 36(7): 109527, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34348131

RESUMO

COVID-19 pathology involves dysregulation of diverse molecular, cellular, and physiological processes. To expedite integrated and collaborative COVID-19 research, we completed multi-omics analysis of hospitalized COVID-19 patients, including matched analysis of the whole-blood transcriptome, plasma proteomics with two complementary platforms, cytokine profiling, plasma and red blood cell metabolomics, deep immune cell phenotyping by mass cytometry, and clinical data annotation. We refer to this multidimensional dataset as the COVIDome. We then created the COVIDome Explorer, an online researcher portal where the data can be analyzed and visualized in real time. We illustrate herein the use of the COVIDome dataset through a multi-omics analysis of biosignatures associated with C-reactive protein (CRP), an established marker of poor prognosis in COVID-19, revealing associations between CRP levels and damage-associated molecular patterns, depletion of protective serpins, and mitochondrial metabolism dysregulation. We expect that the COVIDome Explorer will rapidly accelerate data sharing, hypothesis testing, and discoveries worldwide.


Assuntos
COVID-19/genética , COVID-19/metabolismo , Bases de Dados Genéticas , Metaboloma , Proteoma , Transcriptoma , Acesso à Informação , Adulto , COVID-19/imunologia , Estudos de Casos e Controles , Mineração de Dados , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Proteômica , Adulto Jovem
11.
medRxiv ; 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33758879

RESUMO

COVID-19 pathology involves dysregulation of diverse molecular, cellular, and physiological processes. In order to expedite integrated and collaborative COVID-19 research, we completed multi-omics analysis of hospitalized COVID-19 patients including matched analysis of the whole blood transcriptome, plasma proteomics with two complementary platforms, cytokine profiling, plasma and red blood cell metabolomics, deep immune cell phenotyping by mass cytometry, and clinical data annotation. We refer to this multidimensional dataset as the COVIDome. We then created the COVIDome Explorer, an online researcher portal where the data can be analyzed and visualized in real time. We illustrate here the use of the COVIDome dataset through a multi-omics analysis of biosignatures associated with C-reactive protein (CRP), an established marker of poor prognosis in COVID-19, revealing associations between CRP levels and damage-associated molecular patterns, depletion of protective serpins, and mitochondrial metabolism dysregulation. We expect that the COVIDome Explorer will rapidly accelerate data sharing, hypothesis testing, and discoveries worldwide.

12.
Breast Cancer Res ; 23(1): 40, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766090

RESUMO

BACKGROUND: Characterization of breast cancer (BC) through the determination of conventional markers such as ER, PR, HER2, and Ki67 has been useful as a predictive and therapeutic tool. Also, assessment of tumor-infiltrating lymphocytes has been proposed as an important prognostic aspect to be considered in certain BC subtypes. However, there is still a need to identify additional biomarkers that could add precision in distinguishing therapeutic response of individual patients. To this end, we focused in the expression of interferon regulatory factor 8 (IRF8) in BC cells. IRF8 is a transcription factor which plays a well-determined role in myeloid cells and that seems to have multiple antitumoral roles: it has tumor suppressor functions; it acts downstream IFN/STAT1, required for the success of some therapeutic regimes, and its expression in neoplastic cells seems to depend on a cross talk between the immune contexture and the tumor cells. The goal of the present study was to examine the relationship between IRF8 with the therapeutic response and the immune contexture in BC, since its clinical significance in this type of cancer has not been thoroughly addressed. METHODS: We identified the relationship between IRF8 expression and the clinical outcome of BC patients and validated IRF8 as predictive biomarker by using public databases and then performed in silico analysis. To correlate the expression of IRF8 with the immune infiltrate in BC samples, we performed quantitative multiplex immunohistochemistry. RESULTS: IRF8 expression can precisely predict the complete pathological response to monoclonal antibody therapy or to select combinations of chemotherapy such as FAC (fluorouracil, adriamycin, and cytoxan) in ER-negative BC subtypes. Analysis of immune cell infiltration indicates there is a strong correlation between activated and effector CD8+ T cell infiltration and tumoral IRF8 expression. CONCLUSIONS: We propose IRF8 expression as a potent biomarker not only for prognosis, but also for predicting therapy response in ER-negative BC phenotypes. Its expression in neoplastic cells also correlates with CD8+ T cell activation and infiltration. Therefore, our results justify new efforts towards understanding mechanisms regulating IRF8 expression and how they can be therapeutically manipulated.


Assuntos
Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/patologia , Fatores Reguladores de Interferon/metabolismo , Linfócitos do Interstício Tumoral/patologia , Receptores de Estrogênio/deficiência , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Prognóstico , Resultado do Tratamento
13.
Elife ; 102021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724185

RESUMO

COVID19 is a heterogeneous medical condition involving diverse underlying pathophysiological processes including hyperinflammation, endothelial damage, thrombotic microangiopathy, and end-organ damage. Limited knowledge about the molecular mechanisms driving these processes and lack of staging biomarkers hamper the ability to stratify patients for targeted therapeutics. We report here the results of a cross-sectional multi-omics analysis of hospitalized COVID19 patients revealing that seroconversion status associates with distinct underlying pathophysiological states. Low antibody titers associate with hyperactive T cells and NK cells, high levels of IFN alpha, gamma and lambda ligands, markers of systemic complement activation, and depletion of lymphocytes, neutrophils, and platelets. Upon seroconversion, all of these processes are attenuated, observing instead increases in B cell subsets, emergency hematopoiesis, increased D-dimer, and hypoalbuminemia. We propose that seroconversion status could potentially be used as a biosignature to stratify patients for therapeutic intervention and to inform analysis of clinical trial results in heterogenous patient populations.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2 , Soroconversão , Biomarcadores , COVID-19/imunologia , COVID-19/metabolismo , Comorbidade , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Hematopoese , Homeostase , Hospitalização , Humanos , Hipoalbuminemia , Interferons/metabolismo , Modelos Biológicos , Estudos Soroepidemiológicos , Transdução de Sinais
14.
medRxiv ; 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33330890

RESUMO

COVID19 is a heterogeneous medical condition involving a suite of underlying pathophysiological processes including hyperinflammation, endothelial damage, thrombotic microangiopathy, and end-organ damage. Limited knowledge about the molecular mechanisms driving these processes and lack of staging biomarkers hamper the ability to stratify patients for targeted therapeutics. We report here the results of a cross-sectional multi-omics analysis of hospitalized COVID19 patients revealing that seroconversion status associates with distinct underlying pathophysiological states. Seronegative COVID19 patients harbor hyperactive T cells and NK cells, high levels of IFN alpha, gamma and lambda ligands, markers of systemic complement activation, neutropenia, lymphopenia and thrombocytopenia. In seropositive patients, all of these processes are attenuated, observing instead increases in B cell subsets, emergency hematopoiesis, increased markers of platelet activation, and hypoalbuminemia. We propose that seroconversion status could potentially be used as a biosignature to stratify patients for therapeutic intervention and to inform analysis of clinical trial results in heterogenous patient populations.

15.
Cell Rep ; 33(7): 108407, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33207208

RESUMO

Individuals with Down syndrome (DS; trisomy 21) display hyperactivation of interferon (IFN) signaling and chronic inflammation, which could potentially be explained by the extra copy of four IFN receptor (IFNR) genes encoded on chromosome 21. However, the clinical effects of IFN hyperactivity in DS remain undefined. Here, we report that a commonly used mouse model of DS overexpresses IFNR genes and shows hypersensitivity to IFN ligands in diverse immune cell types. When treated repeatedly with a TLR3 agonist to induce chronic inflammation, these animals overexpress key IFN-stimulated genes, induce cytokine production, exhibit liver pathology, and undergo rapid weight loss. Importantly, the lethal immune hypersensitivity and cytokine production and the ensuing pathology are ameliorated by JAK1 inhibition. These results indicate that individuals with DS may experience harmful hyperinflammation upon IFN-inducing immune stimuli, as observed during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, pointing to JAK1 inhibition as a strategy to restore immune homeostasis in DS.


Assuntos
Azetidinas/uso terapêutico , Síndrome de Down/imunologia , Hipersensibilidade/tratamento farmacológico , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Síndrome de Down/complicações , Feminino , Hipersensibilidade/etiologia , Hipersensibilidade/imunologia , Imunidade Inata , Interferon-alfa/metabolismo , Fígado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Purinas , Pirazóis , Receptores Toll-Like/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(48): 24231-24241, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31699819

RESUMO

Trisomy 21 (T21) causes Down syndrome (DS), a condition characterized by high prevalence of autoimmune disorders. However, the molecular and cellular mechanisms driving this phenotype remain unclear. Building upon our previous finding that T cells from people with DS show increased expression of interferon (IFN)-stimulated genes, we have completed a comprehensive characterization of the peripheral T cell compartment in adults with DS with and without autoimmune conditions. CD8+ T cells from adults with DS are depleted of naïve subsets and enriched for differentiated subsets, express higher levels of markers of activation and senescence (e.g., IFN-γ, Granzyme B, PD-1, KLRG1), and overproduce cytokines tied to autoimmunity (e.g., TNF-α). Conventional CD4+ T cells display increased differentiation, polarization toward the Th1 and Th1/17 states, and overproduction of the autoimmunity-related cytokines IL-17A and IL-22. Plasma cytokine analysis confirms elevation of multiple autoimmunity-related cytokines (e.g., TNF-α, IL17A-D, IL-22) in people with DS, independent of diagnosis of autoimmunity. Although Tregs are more abundant in DS, functional assays show that CD8+ and CD4+ effector T cells with T21 are resistant to Treg-mediated suppression, regardless of Treg karyotype. Transcriptome analysis of white blood cells and T cells reveals strong signatures of T cell differentiation and activation that correlate positively with IFN hyperactivity. Finally, mass cytometry analysis of 8 IFN-inducible phosphoepitopes demonstrates that T cell subsets with T21 show elevated levels of basal IFN signaling and hypersensitivity to IFN-α stimulation. Therefore, these results point to T cell dysregulation associated with IFN hyperactivity as a contributor to autoimmunity in DS.


Assuntos
Autoimunidade/genética , Síndrome de Down/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/fisiologia , Linhagem da Célula , Senescência Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Interferon-alfa/farmacologia , Interferon gama/imunologia , Ativação Linfocitária/genética , Masculino , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Adulto Jovem
17.
Front Immunol ; 10: 2614, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781113

RESUMO

The immune response against cancer generated by type-I-interferons (IFN-1) has recently been described. Exogenous and endogenous IFN-α/ß have an important role in immune surveillance and control of tumor development. In addition, IFN-1s have recently emerged as novel DAMPs for the consecutive events connecting innate and adaptive immunity, and they also have been postulated as an essential requirement for induction of immunogenic cell death (ICD). In this context, photodynamic therapy (PDT) has been previously linked to the ICD. PDT consists in the administration of a photosensitizer (PS) and its activation by irradiation of the affected area with visible light producing excitation of the PS. This leads to the local generation of harmful reactive oxygen species (ROS) with limited or no systemic defects. In the current work, Me-ALA inducing PpIX (endogenous PS) was administrated to B16-OVA melanoma cells. PpIX preferentially localized in the endoplasmic reticulum (ER). Subsequent PpIX activation with visible light significantly induced oxidative ER-stress mediated-apoptotic cell death. Under these conditions, the present study was the first to report the in vitro upregulation of IFN-1 expression in response to photodynamic treatment in melanoma. This IFN-α/ß transcripts upregulation was concurrent with IRF-3 phosphorylation at levels that efficiently activated STAT1 and increased ligand receptor (cGAS) and ISG (CXCL10, MX1, ISG15) expression. The IFN-1 pathway has been identified as a critical molecular pathway for the antitumor host immune response, more specifically for the dendritic cells (DCs) functions. In this sense, PDT-treated melanoma cells induced IFN-1-dependent phenotypic maturation of monocyte-derived dendritic cells (DCs) by enhancing co-stimulatory signals (CD80, MHC-II) and tumor-directed chemotaxis. Collectively, our findings showed a new effect of PDT-treated cancer cells by modulating the IFN-1 pathway and its impact on the activation of DCs, emphasizing the potential relevance of PDT in adoptive immunotherapy protocols.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Melanoma Experimental/tratamento farmacológico , Fotoquimioterapia , Animais , Apoptose , Linhagem Celular Tumoral , Luz , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/uso terapêutico
18.
Cell Rep ; 29(7): 1893-1908.e4, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722205

RESUMO

People with Down syndrome (DS; trisomy 21) display a different disease spectrum relative to the general population, including lower rates of solid malignancies and higher incidence of neurological and autoimmune conditions. However, the mechanisms driving this unique clinical profile await elucidation. We completed a deep mapping of the immune system in adults with DS using mass cytometry to evaluate 100 immune cell types, which revealed global immune dysregulation consistent with chronic inflammation, including key changes in the myeloid and lymphoid cell compartments. Furthermore, measurement of interferon-inducible phosphorylation events revealed widespread hypersensitivity to interferon-α in DS, with cell-type-specific variations in downstream intracellular signaling. Mechanistically, this could be explained by overexpression of the interferon receptors encoded on chromosome 21, as demonstrated by increased IFNAR1 surface expression in all immune lineages tested. These results point to interferon-driven immune dysregulation as a likely contributor to the developmental and clinical hallmarks of DS.


Assuntos
Síndrome de Down/imunologia , Interferon-alfa/imunologia , Adulto , Síndrome de Down/patologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade
19.
Front Immunol ; 10: 503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949170

RESUMO

An important challenge in cancer immunotherapy is to expand the number of patients that benefit from immune checkpoint inhibitors (CI), a fact that has been related to the pre-existence of an efficient anti-tumor immune response. Different strategies are being proposed to promote tumor immunity and to be used in combined therapies with CI. Recently, we reported that intratumoral administration of naked poly A:U, a dsRNA mimetic empirically used in early clinical trials with some success, delays tumor growth and prolongs mice survival in several murine cancer models. Here, we show that CD103+ cDC1 and, to a much lesser extent CD11b+ cDC2, are the only populations expressing TLR3 at the tumor site, and consequently could be potential targets of poly A:U. Upon poly A:U administration these cells become activated and elicit profound changes in the composition of the tumor immune infiltrate, switching the immune suppressive tumor environment to anti-tumor immunity. The sole administration of naked poly A:U promotes striking changes within the lymphoid compartment, with all the anti-tumoral parameters being enhanced: a higher frequency of CD8+ Granzyme B+ T cells, (lower Treg/CD8+ ratio) and an important expansion of tumor-antigen specific CD8+ T cells. Also, PD1/PDL1 showed an increased expression indicating that neutralization of this axis could be exploited in combination with poly A:U. Our results shed new light to promote further assays in this dsRNA mimetic to the clinical field.


Assuntos
Antígenos CD/imunologia , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Experimentais/imunologia , Receptor 3 Toll-Like/imunologia , Microambiente Tumoral/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos T CD8-Positivos/patologia , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/patologia , Poli A-U/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
20.
PLoS One ; 12(6): e0179897, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662055

RESUMO

The mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models. In this study, we sought to better define the role of MyD88 in neoplastic cells using a murine melanoma model. Herein, we have demonstrated that MyD88 expression is required to maintain the angiogenic switch that supports B16 melanoma growth. By knocking down MyD88 we reduced TLR-mediated NF-κB activation with no evident effects over cell proliferation and survival. In addition, MyD88 downregulation was associated with a decrease of HIF1α levels and its target gene VEGF, in correlation with an impaired capability to induce capillary sprouting and tube formation of endothelial cells. Melanomas developed from cells lacking MyD88 showed an enhanced secretion of chemoattractant ligands such as CCL2, CXCL10 and CXCL1 and have an improved infiltration of macrophages to the tumor site. Our results imply that cell-autonomous signaling through MyD88 is required to sustain tumor growth and underscore its function as an important positive modulator of tumor angiogenesis.


Assuntos
Regulação para Baixo , Melanoma Experimental/irrigação sanguínea , Fator 88 de Diferenciação Mieloide/metabolismo , Neovascularização Patológica , Animais , Proliferação de Células , Inativação Gênica , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Fator 88 de Diferenciação Mieloide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA