Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0132923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882522

RESUMO

IMPORTANCE: The influenza virus polymerase is important for adaptation to new hosts and, as a determinant of mutation rate, for the process of adaptation itself. We performed a deep mutational scan of the polymerase basic 1 (PB1) protein to gain insights into the structural and functional constraints on the influenza RNA-dependent RNA polymerase. We find that PB1 is highly constrained at specific sites that are only moderately predicted by the global structure or larger domain. We identified a number of beneficial mutations, many of which have been shown to be functionally important or observed in influenza virus' natural evolution. Overall, our atlas of PB1 mutations and their fitness impacts serves as an important resource for future studies of influenza replication and evolution.


Assuntos
Vírus da Influenza A , Mutação , RNA Polimerase Dependente de RNA , Proteínas Virais , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Mutação/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Evolução Molecular , Infecções por Orthomyxoviridae/virologia
2.
Virus Evol ; 9(1): vead037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325086

RESUMO

The influenza A virus (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV polymerase (polymerase basic protein 2, polymerase basic protein 1, and polymerase acidic protein). Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions among its subunits. In order to study the evolution of the human seasonal H3N2 polymerase since the 1968 pandemic, we identified pairwise evolutionary relationships among ∼7000 H3N2 polymerase sequences using mutual information (MI), which measures the information gained about the identity of one residue when a second residue is known. To account for uneven sampling of viral sequences over time, we developed a weighted MI (wMI) metric and demonstrate that wMI outperforms raw MI through simulations using a well-sampled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dataset. We then constructed wMI networks of the H3N2 polymerase to extend the inherently pairwise wMI statistic to encompass relationships among larger groups of residues. We included hemagglutinin (HA) in the wMI network to distinguish between functional wMI relationships within the polymerase and those potentially due to hitch-hiking on antigenic changes in HA. The wMI networks reveal coevolutionary relationships among residues with roles in replication and encapsidation. Inclusion of HA highlighted polymerase-only subgraphs containing residues with roles in the enzymatic functions of the polymerase and host adaptability. This work provides insight into the factors that drive and constrain the rapid evolution of influenza viruses.

3.
bioRxiv ; 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824962

RESUMO

The influenza A (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV polymerase (PB2, PB1, and PA). Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions among its subunits. In order to study the evolution of the human seasonal H3N2 polymerase since the 1968 pandemic, we identified pairwise evolutionary relationships among ∻7000 H3N2 polymerase sequences using mutual information (MI), which measures the information gained about the identity of one residue when a second residue is known. To account for uneven sampling of viral sequences over time, we developed a weighted MI metric (wMI) and demonstrate that wMI outperforms raw MI through simulations using a well-sampled SARS-CoV-2 dataset. We then constructed wMI networks of the H3N2 polymerase to extend the inherently pairwise wMI statistic to encompass relationships among larger groups of residues. We included HA in the wMI network to distinguish between functional wMI relationships within the polymerase and those potentially due to hitchhiking on antigenic changes in HA. The wMI networks reveal coevolutionary relationships among residues with roles in replication and encapsidation. Inclusion of HA highlighted polymerase-only subgraphs containing residues with roles in the enzymatic functions of the polymerase and host adaptability. This work provides insight into the factors that drive and constrain the rapid evolution of influenza viruses.

4.
Cell Rep ; 35(8): 109178, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038724

RESUMO

Upon pathogen detection, the innate immune system triggers signaling events leading to upregulation of pro-inflammatory and anti-microbial mRNA transcripts. RNA-binding proteins (RBPs) interact with these critical mRNAs and regulate their fates at the post-transcriptional level. One such RBP is ELAVL1. Although significant progress has been made in understanding how embryonic lethal vision-like protein 1 (ELAVL1) regulates mRNAs, its target repertoire and binding distribution within an immunological context remain poorly understood. We overlap four high-throughput approaches to define its context-dependent targets and determine its regulatory impact during immune activation. ELAVL1 transitions from binding overwhelmingly intronic sites to 3' UTR sites upon immune stimulation of cells, binding previously and newly expressed mRNAs. We find that ELAVL1 mediates the RNA stability of genes that regulate pathways essential to pathogen sensing and cytokine production. Our findings reveal the importance of examining RBP regulatory impact under dynamic transcriptomic events to understand their post-transcriptional regulatory roles within specific biological circuitries.


Assuntos
Regiões 3' não Traduzidas/genética , Proteína Semelhante a ELAV 1/metabolismo , Interferons/metabolismo , RNA Mensageiro/metabolismo , Humanos
5.
Nat Protoc ; 16(1): 516-531, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268883

RESUMO

The initial interactions between incoming, pre-replicated virion RNA and host protein factors are important in infection and immunity. Yet currently there are no methods to study these crucial events. We established VIR-CLASP (VIRal Cross-Linking And Solid-phase Purification) to identify the primary viral RNA-host protein interactions. First, host cells are infected with 4-thiouridine (4SU)-labeled RNA viruses and irradiated with 365 nm light to crosslink 4SU-labeled viral genomes and interacting proteins from host or virus. The crosslinked RNA binding proteins (RBPs) are purified by solid-phase reversible immobilization (SPRI) beads with protein-denaturing buffers, and then identified by proteomics. With VIR-CLASP, only the incoming virion RNAs are labeled with 4SU, so crosslinking events specifically occur between proteins and pre-replicated virion RNA. Since solid-phase purification under protein-denaturing conditions, rather than sequence-specific nucleic acid purification, is used to pull-down total RNA and crosslinked RBPs, this method facilitates investigation of potentially all RNA viruses, regardless of RNA sequence. Preparation of 4SU-labeled virus takes ∼7 days and VIR-CLASP takes 1 day.


Assuntos
Infecções por Vírus de RNA/metabolismo , Vírus de RNA/fisiologia , RNA Viral/metabolismo , Ribonucleoproteínas/metabolismo , Extração em Fase Sólida/métodos , Linhagem Celular , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Proteômica/métodos , RNA Viral/isolamento & purificação , Ribonucleoproteínas/isolamento & purificação
6.
Mol Cell ; 78(4): 624-640.e7, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32380061

RESUMO

The primary interactions between incoming viral RNA genomes and host proteins are crucial to infection and immunity. Until now, the ability to study these events was lacking. We developed viral cross-linking and solid-phase purification (VIR-CLASP) to characterize the earliest interactions between viral RNA and cellular proteins. We investigated the infection of human cells using Chikungunya virus (CHIKV) and influenza A virus and identified hundreds of direct RNA-protein interactions. Here, we explore the biological impact of three protein classes that bind CHIKV RNA within minutes of infection. We find CHIKV RNA binds and hijacks the lipid-modifying enzyme fatty acid synthase (FASN) for pro-viral activity. We show that CHIKV genomes are N6-methyladenosine modified, and YTHDF1 binds and suppresses CHIKV replication. Finally, we find that the innate immune DNA sensor IFI16 associates with CHIKV RNA, reducing viral replication and maturation. Our findings have direct applicability to the investigation of potentially all RNA viruses.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Ácido Graxo Sintase Tipo I/metabolismo , Genoma Viral , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Chlorocebus aethiops , Ácido Graxo Sintase Tipo I/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA