Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806016

RESUMO

In this work, composite materials were formed based on various matrices (polymer and porous cellulose matrix) and carbon dots (CDs) with intense room temperature phosphorescence (RTP). The effect of postsynthesis chemical treatment with citric acid or urea on the optical properties of composites was studied: the increase in carboxy and carbonyl groups lead to an increase of RTP signal which can be seen with the naked eye over several seconds. Fabricated composites demonstrate good stability and reversibility of RTP signal by mild heating. Based on developed CDs, luminescent inks were used for simple demonstration of the data encryption on a paper.

2.
J Phys Chem Lett ; 15(1): 113-120, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38147530

RESUMO

Although chirality plays an important role in the natural world, it has also attracted much scientific attention in nanotechnology, in particular, spintronics and bioapplications. Chiral carbon dots (CDs) are promising nanoparticles for sensing and bioimaging since they are biocompatible, ecofriendly, and free from toxic elements. Herein, green and red emissive chiral CDs are fabricated via surface modification treatment of achiral CDs at room temperature. After modification with l-cysteine molecules, the treated CDs demonstrate an intense chiral signal in the region of 200-300 nm with a dissymmetry factor up to 2.3 × 10-4 and high photoluminescence quantum yields of 19% and 15% for green and red emission bands, respectively. These CDs preserve their chiral signal in different ion systems, such as those with pH changes or in the presence of metal ions, along with remarkably low cytotoxicity, making them potential candidates for use as photoluminescent labels for biological objects.


Assuntos
Nanopartículas , Pontos Quânticos , Cisteína , Carbono/química , Pontos Quânticos/química , Íons
3.
Nanoscale ; 15(19): 8845-8853, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37114916

RESUMO

Chemically synthesized carbon dots (CDs) have attracted a lot of attention as an eco-friendly and cost-efficient light-emitting material, and functionalization of CD surfaces with additives of different natures is a useful way to control their properties. In this study, we show how a post-synthetic treatment of CDs with citric acid, benzoic acid, urea and o-phenylenediamine changes their chemical composition and optical properties. In particular, it results in the formation of carboxyl/imide/carbonyl groups at the CD surface, leading to the appearance of additional blue (or for CDs treated with phenylenediamine, blue and green) emissive optical centers on top of the remaining emission from the original CDs. Most importantly, the increased oxidation degree alongside a decreased relative amount of carbon and nitrogen in such treated CDs decreases their highest occupied molecular orbital (HOMO) energy level by up to 0.9 eV (the maximal value was observed for CDs treated with o-phenylenediamine). Moreover, the Fermi energy level shifted above the lowest unoccupied molecular orbital (LUMO) energy level for some of the treated CD samples. Thus, the energy structure of CDs can be tuned and optimized for further applications through the functionalization of their surface with organic additives.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677976

RESUMO

Carbon dots can be used for the fabrication of colloidal multi-purpose complexes for sensing and bio-visualization due to their easy and scalable synthesis, control of their spectral responses over a wide spectral range, and possibility of surface functionalization to meet the application task. Here, we developed a chemical protocol of colloidal complex formation via covalent bonding between carbon dots and plasmonic metal nanoparticles in order to influence and improve their fluorescence. We demonstrate how interactions between carbon dots and metal nanoparticles in the formed complexes, and thus their optical responses, depend on the type of bonds between particles, the architecture of the complexes, and the degree of overlapping of absorption and emission of carbon dots with the plasmon resonance of metals. For the most optimized architecture, emission enhancement reaching up to 5.4- and 4.9-fold for complexes with silver and gold nanoparticles has been achieved, respectively. Our study expands the toolkit of functional materials based on carbon dots for applications in photonics and biomedicine to photonics.

5.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234443

RESUMO

Today, the development of nanomaterials with sensing properties attracts much scientific interest because of the demand for low-cost nontoxic colloidal nanoprobes with high sensitivity and selectivity for various biomedical and environment-related applications. Carbon dots (CDs) are promising candidates for these applications as they demonstrate unique optical properties with intense emissions, biocompatibility, and ease of fabrication. Herein, we developed synthesis protocols to obtain CDs based on o-phenylenediamine with a variety of optical responses depending on additional precursors and changes in the reaction media. The obtained CDs are N-doped (N,S-doped in case of thiourea addition) less than 10 nm spherical particles with emissions observed in the 300−600 nm spectral region depending on their chemical composition. These CDs may act simultaneously as absorptive/fluorescent sensing probes for solvent polarity with ∆S/∆ENT up to 85, for ∆ENT from 0.099 to 1.0 and for pH values in the range of 3.0−8.0, thus opening an opportunity to check the pH in non-pure water or a mixture of solvents. Moreover, CDs preserve their optical properties when embedded in cellulose strips that can be used as sensing probes for fast and easy pH checks. We believe that the resulting dual-purpose sensing nano probes based on CDs will have high demand in various sensing applications.

6.
Nanomaterials (Basel) ; 12(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35159888

RESUMO

Carbon dots (CDs) with an emission in the near infrared spectral region are attractive due to their promising applications in bio-related areas, while their fabrication still remains a challenging task. Herein, we developed a template-assisted method using porous silica microspheres for the formation of CDs with optical transitions in the near infrared. Two organic dyes, Rhodamine 6G and IR1061 with emission in the yellow and near infrared spectral regions, respectively, were used as precursors for CDs. Correlation of morphology and chemical composition with optical properties of obtained CDs revealed the origin of their emission, which is related to the CDs' core optical transitions and dye-derivatives within CDs. By varying annealing temperature, different kinds of optical centers as derivatives of organic dyes are formed in the microsphere's pores. The template-assisted method allows us to synthesize CDs with an emission peaked at 1085 nm and photoluminescence quantum yield of 0.2%, which is the highest value reported so far for CDs emitting at wavelengths longer than 1050 nm.

7.
Nanoscale ; 13(17): 8058-8066, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956931

RESUMO

Since chirality is one of the phenomena often occurring in nature, optically active chiral compounds are important for applications in the fields of biology, pharmacology, and medicine. With this in mind, chiral carbon dots (CDs), which are eco-friendly and easy-to-obtain light-emissive nanoparticles, offer great potential for sensing, bioimaging, enantioselective synthesis, and development of emitters of circularly polarized light. Herein, chiral CDs have been produced via two synthetic approaches using a chiral amino acid precursor l/d-cysteine: (i) surface modification treatment of achiral CDs at room temperature and (ii) one-pot carbonization in the presence of chiral precursor. The chiral signal in the absorption spectra of synthesized CDs originates not only from the chiral precursor but from the optical transitions attributed to the core and surface states of CDs. The use of chiral amino acid molecules in the CD synthesis through carbonization results in a substantial (up to 8 times) increase in their emission quantum yield. Moreover, the synthesized CDs show two-photon absorption which is an attractive feature for their potential bioimaging and sensing applications.


Assuntos
Nanopartículas , Pontos Quânticos , Carbono , Cisteína , Estereoisomerismo , Temperatura
8.
Nanomaterials (Basel) ; 10(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486299

RESUMO

Luminescent composites based on entirely non-toxic, environmentally friendly compounds are in high demand for a variety of applications in photonics and optoelectronics. Carbon dots are a recently developed kind of luminescent nanomaterial that is eco-friendly, biocompatible, easy-to-obtain, and inexpensive, with a stable and widely tunable emission. Herein, we introduce luminescent composites based on carbon dots of different chemical compositions and with different functional groups at the surface which were embedded in a nanoporous silicate glass. The structure and optical properties of these composites were comprehensively examined using electron microscopy, Fourier transform infrared transmission, UV-Vis absorption, and steady-state and time-resolved photoluminescence. It is shown that the silicate matrix efficiently preserved, and even enhanced the emission of different kinds of carbon dots tested. The photoluminescence quantum yield of the fabricated nanocomposite materials reached 35-40%, which is comparable to or even exceeds the values for carbon dots in solution.

9.
Nanoscale ; 12(2): 602-609, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31828268

RESUMO

Carbon dots (CDs) are luminescent nanomaterials, with potential use in bioimaging and sensorics. Here, the influence of the surrounding solvent media on the optical properties of CDs synthesized from the most commonly employed precursors, namely citric acid and ethylenediamine, is investigated. The position of optical transitions of CDs can be tuned by the change of pH and solvent polarity. The most striking observation is related to the interaction of CDs with chlorine containing solvents, which results in resolving a set of narrow peaks within both the absorption and PL bands, similar to those observed for polycyclic aromatic hydrocarbons or organic dyes. We assume that the chlorine containing molecules penetrate the surface layers of CDs, which results in an increase of the distance between the luminescent centers; this correlates well with an enhanced D-band in their Raman spectra. A model of CDs composed of a matrix of hydrogenated amorphous carbon with the inclusions of sp2-domains formed by polycyclic aromatic hydrocarbons and their derivatives is suggested; the latter are stacked ensembles of the luminophores and are considered as the origin of the emission of CDs.

10.
Nanotechnology ; 30(46): 465705, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31422943

RESUMO

The understanding of the physical mechanisms of the nanoobjects interaction within the nanostructured complex materials is one of the main tasks for the development of novel materials with tunable properties. In this work, we develop a formation procedure of the colloidal complexes based on alloyed CdZnSe/ZnS quantum dots and gold nanoparticles where the various mercaptocarboxylic acids are used as the binding molecules. The QD photoluminescence enhancement (up to ×3.1) can be achieved by the control of the interparticle distance in colloidal solutions. We provide a detailed discussion on the influence of the linking molecules on the nanoparticle complexes optical parameters through the steady-state and time-resolved spectral measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA