Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032940

RESUMO

BACKGROUND: Human and mouse natural killer (NK) cells have been shown to develop memory-like function after short-term exposure to the cocktail of IL-12/15/18 or to overnight co-culture with some tumor cell lines. The resulting cells retain enhanced lytic ability for up to 7 days as well as after cryopreservation, and memory-like NK cells (mlNK) have been shown to induce complete remissions in patients with hematological malignancies. No single phenotype has been described for mlNK and the physiological changes induced by the short-term cytokine or tumor-priming which are responsible for these enhanced functions have not been fully characterized. Here, we have generated mlNK by cytokine and tumor-priming to find commonalities to better define the nature of NK cell "memory" in vitro and, for the first time, in vivo. METHODS: We initiated mlNK in vitro from healthy donors with cytokines (initiated cytokine-induced memory-like (iCIML)-NK) and by tumor priming (TpNK) overnight and compared them by high-dimensional flow cytometry, proteomic and metabolomic profiling. As a potential mechanism of enhanced cytolytic function, we analyzed the avidity of binding of the mlNK to NK-resistant tumors (z-Movi). We generated TpNK from healthy donors and from cancer patients to determine whether mlNK generated by interaction with a single tumor type could enhance lytic activity. Finally, we used a replication-incompetent tumor cell line (INKmune) to treat patients with myeloid leukaemias to potentiate NK cell function in vivo. RESULTS: Tumor-primed mlNK from healthy donors and patients with cancer showed increased cytotoxicity against multiple tumor cell lines in vitro, analogous to iCIML-NK cells. Multidimensional cytometry identified distinct memory-like profiles of subsets of cells with memory-like characteristics; upregulation of CD57, CD69, CD25 and ICAM1. Proteomic profiling identified 41 proteins restricted to mlNK cells and we identified candidate molecules for the basis of NK memory which can explain how mlNK overcome inhibition by resistant tumors. Finally, of five patients with myelodysplastic syndrome or refractory acute myeloid leukemia treated with INKmune, three responded to treatment with measurable increases in NK lytic function and systemic cytokines. CONCLUSIONS: NK cell "memory" is a physiological state associated with resistance to MHC-mediated inhibition, increased metabolic function, mitochondrial fitness and avidity to NK-resistant target cells.


Assuntos
Memória Imunológica , Células Matadoras Naturais , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Proteômica/métodos , Citocinas/metabolismo , Linhagem Celular Tumoral , Imunoterapia/métodos , Fenótipo , Camundongos
2.
Cells ; 12(4)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36831300

RESUMO

Myelodysplastic syndrome (MDS) treatment remains a big challenge due to the heterogeneous nature of the disease and its ability to progress to acute myeloid leukemia (AML). The only curative option is allogeneic hematopoietic stem cell transplantation (HSCT), but most patients are unfit for this procedure and are left with only palliative treatment options, causing a big unmet need in the context of this disease. Natural killer (NK) cells are attractive candidates for MDS immunotherapy due to their ability to target myeloid leukemic cells without prior sensitization, and in recent years we have seen an arising number of clinical trials in AML and, recently, MDS. NK cells are reported to be highly dysfunctional in MDS patients, which can be overcome by adoptive NK cell immunotherapy or activation of endogenous NK cells. Here, we review the role of NK cells in MDS, the contribution of the tumor microenvironment (TME) to NK cell impairment, and the most recent data from NK cell-based clinical trials in MDS.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/patologia , Células Matadoras Naturais , Leucemia Mieloide Aguda/patologia , Imunoterapia Adotiva , Transplante Homólogo , Microambiente Tumoral
3.
PLoS One ; 14(6): e0218674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242243

RESUMO

An emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or "priming," of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells. We observe the downregulation of several activation receptors including CD16, CD62L, C-X-C chemokine receptor (CXCR)-4, natural killer group 2 member D (NKG2D), DNAX accessory molecule (DNAM)-1, and NKp46 following tumor-priming. Although this NK cell phenotype is typically associated with NK cell dysfunction in cancer, we reveal the upregulation of NK cell activation markers, such as CD69 and CD25; secretion of pro-inflammatory cytokines, including macrophage inflammatory proteins (MIP-1) α /ß and IL-1ß/6/8; and overexpression of numerous genes associated with enhanced NK cell cytotoxicity and immunomodulatory functions, such as FAS, TNFSF10, MAPK11, TNF, and IFNG. Thus, it appears that tumor-mediated ligation of receptors on NK cells may induce a primed state which may or may not lead to full triggering of the lytic or cytokine secreting machinery. Key signaling molecules exclusively affected by tumor-priming include MAP2K3, MARCKSL1, STAT5A, and TNFAIP3, which are specifically associated with NK cell cytotoxicity against tumor targets. Collectively, these findings help define the phenotypic and transcriptional signature of NK cells following their encounters with tumor cells, independent of cytokine stimulation, and provide insight into tumor-specific NK cell responses to inform the transition toward harnessing the therapeutic potential of NK cells in cancer.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/imunologia , Citotoxicidade Imunológica , Redes Reguladoras de Genes , Humanos , Imunoterapia , Mediadores da Inflamação/metabolismo , Células K562 , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Células MCF-7 , Neoplasias/genética , Neoplasias/terapia , Fenótipo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA