Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682723

RESUMO

Angiotensin II (Ang II) is a critical regulator of insulin signaling in the cardiovascular system and metabolic tissues. However, in adipose cells, the regulatory role of Ang II on insulin actions remains to be elucidated. The effect of Ang II on insulin-induced insulin receptor (IR) phosphorylation, Akt activation, and glucose uptake was examined in 3T3-L1 adipocytes. In these cells, Ang II specifically inhibited insulin-stimulated IR and insulin receptor substrate-1 (IRS-1) tyrosine-phosphorylation, Akt activation, and glucose uptake in a time-dependent manner. These inhibitory actions were associated with increased phosphorylation of the IR at serine residues. Interestingly, Ang II-induced serine-phosphorylation of IRS was not detected, suggesting that Ang II-induced desensitization begins from IR regulation itself. PKC inhibition by BIM I restored the inhibitory effect of Ang II on insulin actions. We also found that Ang II promoted activation of several PKC isoforms, including PKCα/ßI/ßII/δ, and its association with the IR, particularly PKCßII, showed the highest interaction. Finally, we also found a similar regulatory effect of Ang II in isolated adipocytes, where insulin-induced Akt phosphorylation was inhibited by Ang II, an effect that was prevented by PKC inhibitors. These results suggest that Ang II may lead to insulin resistance through PKC activation in adipocytes.


Assuntos
Angiotensina II , Receptor de Insulina , Adipócitos/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Glucose/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Serina/metabolismo
2.
J Neurogastroenterol Motil ; 20(1): 64-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24466446

RESUMO

BACKGROUND/AIMS: To evaluate the effectiveness of pantoprazole magnesium (pantoprazole-Mg) 40 mg in the relief of esophageal and extra-esophageal symptoms of gastroesophageal reflux disease (GERD), particularly night-time symptoms. METHODS: Patients (aged 18-50 years) with 3-month history of heartburn and/or acid regurgitation plus at least one other symptom in the last week were enrolled in a nationwide, prospective and observational study in Mexico. Patients received pantoprazole-Mg 40 mg once daily during 4 weeks. Symptoms were assessed through a physician-administered structured interview and the patient-completed ReQuest in Practice™ questionnaire. Night-time GERD was defined as arousal from sleep during the night due to GERD-associated symptoms. RESULTS: Out of 4,343 patients included at basal visit, 3,665 were considered for the effectiveness per protocol analysis. At baseline, patients had a median of 8 GERD related symptoms. Patients with night-time GERD symptoms (42.7%) were more likely to have extra-esophageal symptoms (P < 0.001) than other GERD patients. Pantoprazole-Mg 40 mg once daily for 4 weeks improved a broad range of GERD-associated symptoms from baseline (80% reduction on physicians assessments; 68-77% reduction on ReQuest in Practice™ dimensions), including both day- and night-time GERD symptoms; improvements were the greatest for extra-esophageal symptoms in patients with night-time symptoms. Pantoprazole-Mg was well tolerated. CONCLUSIONS: Pantoprazole-Mg 40 mg significantly improved a broad range of esophageal and extra-esophageal GERD related symptoms including sleep disturbances, as well as well-being, in patients with daytime or night-time GERD, making it a good option for patients with GERD, especially when extra-esophageal and night-time symptoms are present.

3.
Biochem Pharmacol ; 79(5): 733-45, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19879250

RESUMO

To investigate the potential interactions between the angiotensin II (Ang II) and insulin signaling systems, regulation of IRS-1 phosphorylation and insulin-induced Akt activation by Ang II were examined in clone 9 (C9) hepatocytes. In these cells, Ang II specifically inhibited activation of insulin-induced Akt Thr(308) and its immediate downstream substrate GSK-3alpha/beta in a time-dependent fashion, with approximately 70% reduction at 15 min. These inhibitory actions were associated with increased IRS-1 phosphorylation of Ser(636)/Ser(639) that was prevented by selective blockade of EGFR tyrosine kinase activity with AG1478. Previous studies have shown that insulin-induced phosphorylation of IRS-1 on Ser(636)/Ser(639) is mediated mainly by the PI3K/mTOR/S6K-1 sequence. Studies with specific inhibitors of PI3K (wortmannin) and mTOR (rapamycin) revealed that Ang II stimulates IRS-1 phosphorylation of Ser(636)/Ser(639) via the PI3K/mTOR/S6K-1 pathway. Both inhibitors blocked the effect of Ang II on insulin-induced activation of Akt. Studies using the specific MEK inhibitor, PD98059, revealed that ERK1/2 activation also mediates Ang II-induced S6K-1 and IRS-1 phosphorylation, and the impairment of Akt Thr(308) and GSK-3alpha/beta phosphorylation. Further studies with selective inhibitors showed that PI3K activation was upstream of ERK, suggesting a new mechanism for Ang II-induced impairment of insulin signaling. These findings indicate that Ang II has a significant role in the development of insulin resistance by a mechanism that involves EGFR transactivation and the PI3K/ERK1/2/mTOR-S6K-1 pathway.


Assuntos
Angiotensina II/farmacologia , Receptores ErbB/genética , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vasoconstritores/farmacologia , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Resistência à Insulina/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas , Ratos , Receptor de Insulina/metabolismo , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , Ativação Transcricional , Tirfostinas/farmacologia
4.
Mol Cell Endocrinol ; 302(2): 128-39, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19150387

RESUMO

Angiotensin II (Ang II), the major effector hormone of the renin-angiotensin system (RAS), has an important role in the regulation of vascular and renal homeostasis. Clinical and pharmacological studies have recently shown that Ang II is a critical promoter of insulin resistance and diabetes mellitus type 2. Ang II exerts its actions on insulin-sensitive tissues such as liver, muscle and adipose tissue where it has effects on the insulin receptor (IR), insulin receptor substrate (IRS) proteins and the downstream effectors PI3K, Akt and GLUT4. The molecular mechanisms involved have not been completely identified, but the role of serine/threonine phosphorylation of the IR and IRS-1 proteins in desensitization of insulin action has been well established. The purpose of this review is to highlight recent advances in the understanding of Ang II actions which lead to the development of insulin resistance and its implications for diabetes.


Assuntos
Angiotensina II/fisiologia , Resistência à Insulina , Diabetes Mellitus/etiologia , Humanos , Sistema Renina-Angiotensina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA