Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 396(1): 81-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25205713

RESUMO

Matriptase-2 is a type II transmembrane serine protease controlling the expression of hepcidin, the key regulator of iron homeostasis. By cleaving hemojuvelin, matriptase-2 suppresses bone morphogenetic protein/sons of mothers against decapentaplegic signaling. So far, the only known putative substrates of matriptase-2 are hemojuvelin and matriptase-2 itself. In this study, fetuin-A (α2-Heremans-Schmid glycoprotein) was identified in vitro as a substrate of matriptase-2. The protease-substrate interaction was validated by isolating matriptase-2 via the affinity to fetuin-A. Fetuin-A is a liver-derived plasma protein with multiple functions, which is proteolytically processed to yield a disulfide-linked two-chain form. In co-transfected cells, a matriptase-2-dependent conversion of unprocessed fetuin-A into a two-chain form was detected. Conversely, downregulation of endogenously expressed matriptase-2 stabilized fetuin-A. Arg and Lys residues located within the 40 residue spanning connecting peptide of fetuin-A were identified as cleavage sites for matriptase-2. Analysis of hepcidin expression revealed an inductive effect of fetuin-A, which was abolished by matriptase-2. Fetuin-A deficiency in mice resulted in decreased hepcidin mRNA levels. These findings implicate a role of fetuin-A in iron homeostasis and provide new insights into the mechanism of how matriptase-2 might modulate hepcidin expression.


Assuntos
Fetuínas/metabolismo , Hepcidinas/metabolismo , Proteínas de Membrana/genética , Serina Endopeptidases/genética , Animais , Fetuínas/genética , Hepcidinas/genética , Camundongos , Serina Proteases , Transdução de Sinais
2.
J Med Chem ; 56(2): 521-33, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23252745

RESUMO

Human cathepsin B has many house-keeping functions, such as protein turnover in lysosomes. However, dysregulation of its activity is associated with numerous diseases, including cancers. We present here the structure-based design and synthesis of new cathepsin B inhibitors using the cocrystal structure of 5-nitro-8-hydroxyquinoline in the cathepsin B active site. A focused library of over 50 compounds was prepared by modifying positions 5, 7, and 8 of the parent compound nitroxoline. The kinetic parameters and modes of inhibition were characterized, and the selectivities of the most promising inhibitors were determined. The best performing inhibitor 17 was effective in cell-based in vitro models of tumor invasion, where it significantly abrogated invasion of MCF-10A neoT cells. These data show that we have successfully explored the structure-activity relationships of nitroxoline derivatives to provide new inhibitors that could eventually lead to compounds with clinical usefulness against the deleterious effects of cathepsin B in cancer progression.


Assuntos
Catepsina B/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Nitroquinolinas/química , Relação Estrutura-Atividade
3.
Biochem J ; 430(1): 87-95, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20518742

RESUMO

Matriptase-2 is a member of the TTSPs (type II transmembrane serine proteases), an emerging class of cell surface proteases involved in tissue homoeostasis and several human disorders. Matriptase-2 exhibits a domain organization similar to other TTSPs, with a cytoplasmic N-terminus, a transmembrane domain and an extracellular C-terminus containing the non-catalytic stem region and the protease domain. To gain further insight into the biochemical functions of matriptase-2, we characterized the subcellular localization of the monomeric and multimeric form and identified cell surface shedding as a defining point in its proteolytic processing. Using HEK (human embryonic kidney)-293 cells, stably transfected with cDNA encoding human matriptase-2, we demonstrate a cell membrane localization for the inactive single-chain zymogen. Membrane-associated matriptase-2 is highly N-glycosylated and occurs in monomeric, as well as multimeric, forms covalently linked by disulfide bonds. Furthermore, matriptase-2 undergoes shedding into the conditioned medium as an activated two-chain form containing the catalytic domain, which is cleaved at the canonical activation motif, but is linked to a released portion of the stem region via a conserved disulfide bond. Cleavage sites were identified by MS, sequencing and mutational analysis. Interestingly, cell surface shedding and activation of a matriptase-2 variant bearing a mutation at the active-site serine residue is dependent on the catalytic activity of co-expressed or co-incubated wild-type matriptase-2, indicating a transactivation and trans-shedding mechanism.


Assuntos
Precursores Enzimáticos/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Catálise , Domínio Catalítico , Linhagem Celular , Membrana Celular/metabolismo , Meios de Cultivo Condicionados , Ativação Enzimática , Precursores Enzimáticos/genética , Espaço Extracelular/enzimologia , Humanos , Proteínas de Membrana/genética , Mutação , Ligação Proteica , Serina Endopeptidases/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA