RESUMO
Microcin E492 is a pore-forming bacteriocin with toxic activity against Enterobacteriaceae, which undergoes amyloid aggregation as a mechanism to regulate its toxicity. To be active, it requires the posttranslational attachment to the C-terminus of a glycosylated enterochelin derivative (salmochelin), a process carried out by the proteins MceC, MceI and MceJ encoded in the MccE492 gene cluster. Both microcin E492 and salmochelin have a proposed role in the virulence of the bacterial pathogen Klebsiella pneumoniae. Besides, enterochelin is produced as a response to low iron availability and its synthesis is controlled by the global iron regulator Fur. Since the production of active microcin E492 depends on enterochelin biosynthesis, both processes could be coordinately regulated. In this work, we investigated the role of Fur in the expression of the microcin E492 maturation genes mceCJI. mceC was not regulated by Fur as it occurs with its homolog iroB in Salmonella enterica. We demonstrated that mceJI along with the previously uncharacterized gene mceX are transcribed as a single mRNA, and that Fur binds in vivo to a Fur box located upstream of the mceX-mceJI unit. Also, we established that the expression of these genes decreased in a condition of high iron availability, while this effect is abrogated in a Δfur background. Furthermore, our results indicated that MceX acts as a negative regulator of microcin E492 structural gene expression, coupling its synthesis to the iron-dependent regulatory circuit. Consequently, fur or mceX overexpression led to a significant decrease in the antibacterial activity of cells producing microcin E492. Altogether these results show that both the expression of microcin E492 maturation genes mceJI, and MceX the negative regulator of microcin E492 synthesis, are coordinated with the enterochelin production by Fur, depending on the iron levels in the medium.
Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Ferro/metabolismo , Proteínas Repressoras/metabolismo , DNA Recombinante , Escherichia coli , Regulação da Expressão Gênica , Motivos de Nucleotídeos , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Transcrição GênicaRESUMO
This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs) as platforms for the sustained release of prednisone (PDN). Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD) was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA) was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%). These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN.
RESUMO
This study describes the in-silico design, synthesis, and evaluation of a cross-linked PVA hydrogel (CLPH) for the absorption of organophosphorus pesticide dimethoate from aqueous solutions. The crosslinking effectiveness of 14 dicarboxilic acids was evaluated through in-silico studies using semiempirical quantum mechanical calculations. According to the theoretical studies, the nanopore of PVA cross-linked with malic acid (CLPH-MA) showed the best interaction energy with dimethoate. Later, using all-atom molecular dynamics simulations, three hydrogels with different proportions of PVA:MA (10:2, 10:4, and 10:6) were used to evaluate their interactions with dimethoate. These results showed that the suitable crosslinking degree for improving the affinity for the pesticide was with 20% (W%) of the cross-linker. In the experimental absorption study, the synthesized CLPH-MA20 recovered 100% of dimethoate from aqueous solutions. Therefore, the theoretical data were correlated with the experimental studies. Surface morphology of CLPH-MA20 by Scanning Electron Microscopy (SEM) was analyzed. In conclusion, the ability of CLPH-MA20 to remove dimethoate could be used as a technological alternative for the treatment of contaminated water.