Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5341, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005434

RESUMO

Most plant-sap feeding insects have obligate relationships with maternally transmitted bacteria. Aphids require their nutritional endosymbiont, Buchnera aphidicola, for the production of essential amino acids. Such endosymbionts are harbored inside of specialized insect cells called bacteriocytes. Here, we use comparative transcriptomics of bacteriocytes between two recently diverged aphid species, Myzus persicae and Acyrthosiphon pisum, to identify key genes that are important for the maintenance of their nutritional mutualism. The majority of genes with conserved expression profiles in M. persicae and A. pisum are for orthologs previously identified in A. pisum to be important for the symbiosis. However, asparaginase which produces aspartate from asparagine was significantly up-regulated only in A. pisum bacteriocytes, potentially because Buchnera of M. persicae encodes its own asparaginase enzyme unlike Buchnera of A. pisum resulting in Buchnera of A. pisum to be dependent on its aphid host for aspartate. One-to-one orthologs that explained the most amount of variation for bacteriocyte specific mRNA expression for both species includes a collaborative gene for methionine biosynthesis, multiple transporters, a horizontally transmitted gene, and secreted proteins. Finally, we highlight species-specific gene clusters which may contribute to host adaptations and/or accommodations in gene regulation to changes in the symbiont or the symbiosis.


Assuntos
Afídeos , Buchnera , Animais , Afídeos/metabolismo , Simbiose/genética , Ácido Aspártico/metabolismo , Asparaginase/metabolismo , Transcriptoma , Buchnera/genética , Buchnera/metabolismo
2.
Mol Ecol Resour ; 23(1): 233-252, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35925827

RESUMO

Lineage specific expansions and gene duplications are some of the most important sources of evolutionary novelty in eukaryotes. Although not as prevalent in eukaryotes compared to bacteria, horizontal gene transfer events can also result in key adaptations for insects, especially for those involved in insect-microbe interactions. In this study we assemble the first chromosomal assembly of the psyllid Bactericera cockerelli and reveal that the B. cockerelli genome has experienced significantly more gene expansion events compared to other Hemipteran representatives with fully sequenced genomes. We also reveal that B. cockerelli's genome is the largest psyllid genome (567 Mb) sequenced to date and is ~15% larger than the other two psyllid species genomes sequenced (Pachypsylla venusta and Diaphorina citri). Structurally, B. cockerelli appears to have an additional chromosome compared to the distantly related psyllid species P. venusta due to a previous chromosomal fission or fusion event. The increase in genome size and dynamic nature of the B. cockerelli genome may largely be contributed to the widespread expansion of type I and II repeat elements that are rampant across all of B. cockerelli's. chromosomes. These repeat elements are distributed near equally in both euchromatic and heterochromatic regions. Furthermore, significant gene family expansions and gene duplications were uncovered for genes that are expected to be important in its adaptation to insect-plant and microbe interactions, which include transcription factors, proteases, odorant receptors, and horizontally transferred genes that are involved in the nutritional symbioses with their long-term nutritional endosymbiont Carsonella.


Assuntos
Hemípteros , Animais , Hemípteros/genética , Simbiose/genética , Genoma , Bactérias/genética , Cromossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA