Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Cell ; 115(6): e202200110, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958013

RESUMO

BACKGROUND INFORMATION: During tumor invasion and metastasis processes, cancer cells are exposed to major compressive and shearing forces, due to their migration through extracellular matrix, dense cell areas, and complex fluids, which may lead to numerous plasma membrane damages. Cancer cells may survive to these mechanical stresses thanks to an efficient membrane repair machinery. Consequently, this machinery may constitute a relevant target to inhibit cancer cell dissemination. RESULTS: We show here that annexin-A5 (ANXA5) and ANXA6 participate in membrane repair of MDA-MB-231 cells, a highly invasive triple-negative breast cancer cell line. These crucial components of the membrane repair machinery are substantially expressed in breast cancer cells in correlation with their invasive properties. In addition, high expression of ANXA5 and ANXA6 predict poor prognosis in high-grade lung, gastric, and breast cancers. In zebrafish, the genetic inhibition of ANXA5 and ANXA6 leads to drastic reduction of tumor cell dissemination. CONCLUSION: We conclude that the inhibition of ANXA5 and ANXA6 prevents membrane repair in cancer cells, which are thus unable to survive to membrane damage during metastasis. SIGNIFICANCE: This result opens a new therapeutic strategy based on targeting membrane repair machinery to inhibit tumor invasion and metastasis.


Assuntos
Neoplasias , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Anexina A6/genética , Anexina A6/metabolismo , Anexina A5/genética , Anexina A5/metabolismo , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo
2.
Phys Rev E ; 104(5): L052101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942825

RESUMO

We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a[over ¯] and variance v_{a}. These two control parameters determine if the avalanche size tends to a stationary distribution (finite scale statistics with finite mean and variance, or power-law tailed statistics with exponent ∈(1,3]), or instead to a nonstationary regime with log-normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by mathematical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions, and they provide a precise definition of the boundaries between the three regimes.

3.
Front Physiol ; 10: 480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105585

RESUMO

In a companion paper (I. Multifractal analysis of clinical data), we used a wavelet-based multiscale analysis to reveal and quantify the multifractal intermittent nature of the cardiac impulse energy in the low frequency range ≲ 2Hz during atrial fibrillation (AF). It demarcated two distinct areas within the coronary sinus (CS) with regionally stable multifractal spectra likely corresponding to different anatomical substrates. The electrical activity also showed no sign of the kind of temporal correlations typical of cascading processes across scales, thereby indicating that the multifractal scaling is carried by variations in the large amplitude oscillations of the recorded bipolar electric potential. In the present study, to account for these observations, we explore the role of the kinetics of gap junction channels (GJCs), in dynamically creating a new kind of imbalance between depolarizing and repolarizing currents. We propose a one-dimensional (1D) spatial model of a denervated myocardium, where the coupling of cardiac cells fails to synchronize the network of cardiac cells because of abnormal transjunctional capacitive charging of GJCs. We show that this non-ohmic nonlinear conduction 1D modeling accounts quantitatively well for the "multifractal random noise" dynamics of the electrical activity experimentally recorded in the left atrial posterior wall area. We further demonstrate that the multifractal properties of the numerical impulse energy are robust to changes in the model parameters.

4.
Nucleic Acids Res ; 46(19): 10157-10172, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30189101

RESUMO

The spatiotemporal program of metazoan DNA replication is regulated during development and altered in cancers. We have generated novel OK-seq, Repli-seq and RNA-seq data to compare the DNA replication and gene expression programs of twelve cancer and non-cancer human cell types. Changes in replication fork directionality (RFD) determined by OK-seq are widespread but more frequent within GC-poor isochores and largely disconnected from transcription changes. Cancer cell RFD profiles cluster with non-cancer cells of similar developmental origin but not with different cancer types. Importantly, recurrent RFD changes are detected in specific tumour progression pathways. Using a model for establishment and early progression of chronic myeloid leukemia (CML), we identify 1027 replication initiation zones (IZs) that progressively change efficiency during long-term expression of the BCR-ABL1 oncogene, being twice more often downregulated than upregulated. Prolonged expression of BCR-ABL1 results in targeting of new IZs and accentuation of previous efficiency changes. Targeted IZs are predominantly located in GC-poor, late replicating gene deserts and frequently silenced in late CML. Prolonged expression of BCR-ABL1 results in massive deletion of GC-poor, late replicating DNA sequences enriched in origin silencing events. We conclude that BCR-ABL1 expression progressively affects replication and stability of GC-poor, late-replicating regions during CML progression.


Assuntos
Replicação do DNA/genética , Sequência Rica em GC/genética , Perfilação da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Origem de Replicação/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/genética , Instabilidade Genômica , Células HeLa , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia
6.
Sci Rep ; 8(1): 8602, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872100

RESUMO

We report on a wavelet based space-scale decomposition method for analyzing the response of living muscle precursor cells (C2C12 myoblasts and myotubes) upon sharp indentation with an AFM cantilever and quantifying their aptitude to sustain such a local shear strain. Beyond global mechanical parameters which are currently used as markers of cell contractility, we emphasize the necessity of characterizing more closely the local fluctuations of the shear relaxation modulus as they carry important clues about the mechanisms of cytoskeleton strain release. Rupture events encountered during fixed velocity shear strain are interpreted as local disruptions of the actin cytoskeleton structures, the strongest (brittle) ones being produced by the tighter and stiffer stress fibers or actin agglomerates. These local strain induced failures are important characteristics of the resilience of these cells, and their aptitude to maintain their shape via a quick recovery from local strains. This study focuses on the perinuclear region because it can be considered as a master mechanical organizing center of these muscle precursor cells. Using this wavelet-based method, we combine the global and local approaches for a comparative analysis of the mechanical parameters of normal myoblasts, myotubes and myoblasts treated with actomyosin cytoskeleton disruptive agents (ATP depletion, blebbistatin).


Assuntos
Citoesqueleto/metabolismo , Mioblastos/fisiologia , Estresse Mecânico , Estresse Fisiológico , Animais , Linhagem Celular , Forma Celular , Camundongos , Microscopia de Força Atômica
7.
Biophys J ; 114(10): 2308-2316, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29580552

RESUMO

Nucleosome-depleted regions around which nucleosomes order following the "statistical" positioning scenario were recently shown to be encoded in the DNA sequence in human. This intrinsic nucleosomal ordering strongly correlates with oscillations in the local GC content as well as with the interspecies and intraspecies mutation profiles, revealing the existence of both positive and negative selection. In this letter, we show that these predicted nucleosome inhibitory energy barriers (NIEBs) with compacted neighboring nucleosomes are indeed ubiquitous to all vertebrates tested. These 1 kb-sized chromatin patterns are widely distributed along vertebrate chromosomes, overall covering more than a third of the genome. We have previously observed in human deviations from neutral evolution at these genome-wide distributed regions, which we interpreted as a possible indication of the selection of an open, accessible, and dynamic nucleosomal array to constitutively facilitate the epigenetic regulation of nuclear functions in a cell-type-specific manner. As a first, very appealing observation supporting this hypothesis, we report evidence of a strong association between NIEB borders and the poly(A) tails of Alu sequences in human. These results suggest that NIEBs provide adequate chromatin patterns favorable to the integration of Alu retrotransposons and, more generally to various transposable elements in the genomes of primates and other vertebrates.


Assuntos
DNA/genética , Nucleossomos/genética , Vertebrados , Animais , Sequência de Bases , Humanos
8.
Appl Spectrosc ; 71(10): 2377-2384, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28509571

RESUMO

We numerically studied the optical properties of spherical nanostructures made of an emitter core coated by a silver shell through the generalized Mie theory. When there is a strong coupling between the localized surface plasmon in the metallic shell and the emitter exciton in the core, the extinction spectra exhibit two peaks. Upon adsorption of analytes on these core-shell nanostructures, the intensities of the two peaks change with opposite trends. This property makes them potential sensitive ratiometric sensors. Molecule adsorption on these nanostructures can be quantified through a very simple optical configuration likely resulting in a much faster acquisition time compared with systems based on the traditional metal nanoparticle surface plasmon resonance (SPR) biosensors.

9.
Front Physiol ; 8: 1139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29632492

RESUMO

Atrial fibrillation (AF) is a cardiac arrhythmia characterized by rapid and irregular atrial electrical activity with a high clinical impact on stroke incidence. Best available therapeutic strategies combine pharmacological and surgical means. But when successful, they do not always prevent long-term relapses. Initial success becomes all the more tricky to achieve as the arrhythmia maintains itself and the pathology evolves into sustained or chronic AF. This raises the open crucial issue of deciphering the mechanisms that govern the onset of AF as well as its perpetuation. In this study, we develop a wavelet-based multi-scale strategy to analyze the electrical activity of human hearts recorded by catheter electrodes, positioned in the coronary sinus (CS), during episodes of AF. We compute the so-called multifractal spectra using two variants of the wavelet transform modulus maxima method, the moment (partition function) method and the magnitude cumulant method. Application of these methods to long time series recorded in a patient with chronic AF provides quantitative evidence of the multifractal intermittent nature of the electric energy of passing cardiac impulses at low frequencies, i.e., for times (≳0.5 s) longer than the mean interbeat (≃ 10-1 s). We also report the results of a two-point magnitude correlation analysis which infers the absence of a multiplicative time-scale structure underlying multifractal scaling. The electric energy dynamics looks like a "multifractal white noise" with quadratic (log-normal) multifractal spectra. These observations challenge concepts of functional reentrant circuits in mechanistic theories of AF, still leaving open the role of the autonomic nervous system (ANS). A transition is indeed observed in the computed multifractal spectra which group according to two distinct areas, consistently with the anatomical substrate binding to the CS, namely the left atrial posterior wall, and the ligament of Marshall which is innervated by the ANS. In a companion paper (II. Modeling), we propose a mathematical model of a denervated heart where the kinetics of gap junction conductance alone induces a desynchronization of the myocardial excitable cells, accounting for the multifractal spectra found experimentally in the left atrial posterior wall area.

10.
Front Physiol ; 7: 336, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555823

RESUMO

There is growing evidence that the microenvironment surrounding a tumor plays a special role in cancer development and cancer therapeutic resistance. Tumors arise from the dysregulation and alteration of both the malignant cells and their environment. By providing tumor-repressing signals, the microenvironment can impose and sustain normal tissue architecture. Once tissue homeostasis is lost, the altered microenvironment can create a niche favoring the tumorigenic transformation process. A major challenge in early breast cancer diagnosis is thus to show that these physiological and architectural alterations can be detected with currently used screening techniques. In a recent study, we used a 1D wavelet-based multi-scale method to analyze breast skin temperature temporal fluctuations collected with an IR thermography camera in patients with breast cancer. This study reveals that the multifractal complexity of temperature fluctuations superimposed on cardiogenic and vasomotor perfusion oscillations observed in healthy breasts is lost in malignant tumor foci in cancerous breasts. Here we use a 2D wavelet-based multifractal method to analyze the spatial fluctuations of breast density in the X-ray mammograms of the same panel of patients. As compared to the long-range correlations and anti-correlations in roughness fluctuations, respectively observed in dense and fatty breast areas, some significant change in the nature of breast density fluctuations with some clear loss of correlations is detected in the neighborhood of malignant tumors. This attests to some architectural disorganization that may deeply affect heat transfer and related thermomechanics in breast tissues, corroborating the change to homogeneous monofractal temperature fluctuations recorded in cancerous breasts with the IR camera. These results open new perspectives in computer-aided methods to assist in early breast cancer diagnosis.

11.
BMC Genomics ; 17: 526, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27472913

RESUMO

BACKGROUND: Recently, a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix has been used to reveal some enrichment of nucleosome-inhibiting energy barriers (NIEBs) nearby ubiquitous human "master" replication origins. Here we use this model to predict the existence of about 1.6 millions NIEBs over the 22 human autosomes. RESULTS: We show that these high energy barriers of mean size 153 bp correspond to nucleosome-depleted regions (NDRs) in vitro, as expected, but also in vivo. On either side of these NIEBs, we observe, in vivo and in vitro, a similar compacted nucleosome ordering, suggesting an absence of chromatin remodeling. This nucleosomal ordering strongly correlates with oscillations of the GC content as well as with the interspecies and intraspecies mutation profiles along these regions. Comparison of these divergence rates reveals the existence of both positive and negative selections linked to nucleosome positioning around these intrinsic NDRs. Overall, these NIEBs and neighboring nucleosomes cover 37.5 % of the human genome where nucleosome occupancy is stably encoded in the DNA sequence. These 1 kb-sized regions of intrinsic nucleosome positioning are equally found in GC-rich and GC-poor isochores, in early and late replicating regions, in intergenic and genic regions but not at gene promoters. CONCLUSION: The source of selection pressure on the NIEBs has yet to be resolved in future work. One possible scenario is that these widely distributed chromatin patterns have been selected in human to impair the condensation of the nucleosomal array into the 30 nm chromatin fiber, so as to facilitate the epigenetic regulation of nuclear functions in a cell-type-specific manner.


Assuntos
Nucleossomos/genética , Seleção Genética , Composição de Bases , Montagem e Desmontagem da Cromatina , Epigênese Genética , Humanos , Origem de Replicação
12.
Appl Opt ; 55(6): 1216-27, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26906571

RESUMO

We report on a fibered high-resolution scanning surface plasmon microscope for long term imaging of living adherent cells. The coupling of a high numerical aperture objective lens and a fibered heterodyne interferometer enhances both the sensitivity and the long term stability of this microscope, allowing for time-lapse recording over several days. The diffraction limit is reached with a radially polarized illumination beam. Adherence and motility of living C2C12 myoblast cells are followed for 50 h, revealing that the dynamics of these cells change after 10 h. This plasmon enhanced evanescent wave microscopy is particularly suited for investigating cell adhesion, since it can not only be performed without staining of the sample but it can also capture in real time the exchange of extracellular matrix elements between the substrate and the cells.


Assuntos
Microscopia de Polarização/métodos , Mioblastos/citologia , Imagem com Lapso de Tempo/métodos , Animais , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Camundongos , Ressonância de Plasmônio de Superfície , Fatores de Tempo
13.
J Biomed Opt ; 20(9): 096005, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26334978

RESUMO

The distribution of refractive indices (RIs) of a living cell contributes in a nonintuitive manner to its optical phase image and quite rarely can be inverted to recover its internal structure. The interpretation of the quantitative phase images of living cells remains a difficult task because (1) we still have very little knowledge on the impact of its internal macromolecular complexes on the local RI and (2) phase changes produced by light propagation through the sample are mixed with diffraction effects by the internal cell bodies. We propose to implement a two-dimensional wavelet-based contour chain detection method to distinguish internal boundaries based on their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are the morphological indicators suited for comparing cells of different origins and/or to follow their transformation in pathologic situations. We use this method to compare nonadherent blood cells from primary and laboratory culture origins and to assess the internal transformation of hematopoietic stem cells by the transduction of the BCR-ABL oncogene responsible for the chronic myelogenous leukemia.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espaço Intracelular/fisiologia , Microscopia de Contraste de Fase/métodos , Processamento de Sinais Assistido por Computador , Análise de Célula Única/métodos , Algoritmos , Linhagem Celular , Eritrócitos/citologia , Humanos
14.
Biophys J ; 108(9): 2235-48, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25954881

RESUMO

Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions.


Assuntos
Parede Celular/química , Elasticidade , Viscosidade , Arabidopsis/citologia , Fenômenos Biomecânicos , Microscopia de Força Atômica
15.
FEBS Lett ; 589(20 Pt A): 2944-57, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25912651

RESUMO

Recent analysis of genome-wide epigenetic modification data, mean replication timing (MRT) profiles and chromosome conformation data in mammals have provided increasing evidence that flexibility in replication origin usage is regulated locally by the epigenetic landscape and over larger genomic distances by the 3D chromatin architecture. Here, we review the recent results establishing some link between replication domains and chromatin structural domains in pluripotent and various differentiated cell types in human. We reconcile the originally proposed dichotomic picture of early and late constant timing regions that replicate by multiple rather synchronous origins in separated nuclear compartments of open and closed chromatins, with the U-shaped MRT domains bordered by "master" replication origins specified by a localized (∼200-300 kb) zone of open and transcriptionally active chromatin from which a replication wave likely initiates and propagates toward the domain center via a cascade of origin firing. We discuss the relationships between these MRT domains, topologically associated domains and lamina-associated domains. This review sheds a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and the determination of differentiation properties.


Assuntos
Replicação do DNA , Animais , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Cromatina/fisiologia , Cromatina/ultraestrutura , Montagem e Desmontagem da Cromatina , Epigênese Genética , Humanos , Conformação de Ácido Nucleico , Sequências Reguladoras de Ácido Nucleico
16.
J Phys Condens Matter ; 27(6): 064102, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25563930

RESUMO

As the elementary building block of eukaryotic chromatin, the nucleosome is at the heart of the compromise between the necessity of compacting DNA in the cell nucleus and the required accessibility to regulatory proteins. The recent availability of genome-wide experimental maps of nucleosome positions for many different organisms and cell types has provided an unprecedented opportunity to elucidate to what extent the DNA sequence conditions the primary structure of chromatin and in turn participates in the chromatin-mediated regulation of nuclear functions, such as gene expression and DNA replication. In this study, we use in vivo and in vitro genome-wide nucleosome occupancy data together with the set of nucleosome-free regions (NFRs) predicted by a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix, to investigate the role of intrinsic nucleosome occupancy in the regulation of the replication spatio-temporal programme in human. We focus our analysis on the so-called replication U/N-domains that were shown to cover about half of the human genome in the germline (skew-N domains) as well as in embryonic stem cells, somatic and HeLa cells (mean replication timing U-domains). The 'master' origins of replication (MaOris) that border these megabase-sized U/N-domains were found to be specified by a few hundred kb wide regions that are hyper-sensitive to DNase I cleavage, hypomethylated, and enriched in epigenetic marks involved in transcription regulation, the hallmarks of localized open chromatin structures. Here we show that replication U/N-domain borders that are conserved in all considered cell lines have an environment highly enriched in nucleosome-excluding-energy barriers, suggesting that these ubiquitous MaOris have been selected during evolution. In contrast, MaOris that are cell-type-specific are mainly regulated epigenetically and are no longer favoured by a local abundance of intrinsic NFRs encoded in the DNA sequence. At the smaller few hundred bp scale of gene promoters, CpG-rich promoters of housekeeping genes found nearby ubiquitous MaOris as well as CpG-poor promoters of tissue-specific genes found nearby cell-type-specific MaOris, both correspond to in vivo NFRs that are not coded as nucleosome-excluding-energy barriers. Whereas the former promoters are likely to correspond to high occupancy transcription factor binding regions, the latter are an illustration that gene regulation in human is typically cell-type-specific.


Assuntos
Replicação do DNA , DNA/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Sequência de Bases , Linhagem Celular , DNA/química , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Inativação Gênica , Genômica , Humanos , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Termodinâmica
17.
Comput Biol Chem ; 53 Pt A: 153-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224847

RESUMO

Besides their large-scale organization in isochores, mammalian genomes display megabase-sized regions, spanning both genes and intergenes, where the strand nucleotide composition asymmetry decreases linearly, possibly due to replication activity. These so-called skew-N domains cover about a third of the human genome and are bordered by two skew upward jumps that were hypothesized to compose a subset of "master" replication origins active in the germline. Skew-N domains were shown to exhibit a particular gene organization. Genes with CpG-rich promoters likely expressed in the germline are over represented near the master replication origins, with large genes being co-oriented with replication fork progression, which suggests some coordination of replication and transcription. In this study, we describe another skew structure that covers ∼13% of the human genome and that is bordered by putative master replication origins similar to the ones flanking skew-N domains. These skew-split-N domains have a shape reminiscent of a N, but split in half, leaving in the center a region of null skew whose length increases with domain size. These central regions (median size ∼860 kb) have a homogeneous composition, i.e. both a null and constant skew and a constant and low GC content. They correspond to heterochromatin gene deserts found in low-GC isochores with an average gene density of 0.81 promoters/Mb as compared to 7.73 promoters/Mb genome wide. The analysis of epigenetic marks and replication timing data confirms that, in these late replicating heterochomatic regions, the initiation of replication is likely to be random. This contrasts with the transcriptionally active euchromatin state found around the bordering well positioned master replication origins. Altogether skew-N domains and skew-split-N domains cover about 50% of the human genome.


Assuntos
Composição de Bases , Cromatina/química , Replicação do DNA , Genoma Humano , Transcrição Gênica , Mapeamento Cromossômico , Ilhas de CpG , Epigênese Genética , Humanos , Modelos Genéticos , Regiões Promotoras Genéticas
18.
Appl Spectrosc ; 68(5): 577-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25014602

RESUMO

Time-resolved fluorescence properties of quenched fluorescein sodium, including self-quenching and collisional quenching by iodide, have been studied by using a picosecond time-correlated single-photon counting (TCSPC) apparatus, together with an upconversion spectrophotofluorometer with a time resolution better than 300 fs. The steady-state fluorescence intensity of fluorescein sodium reached the maximum when its concentration was 510 µM with pH > 9. Both the fluorescence intensity and lifetime decreased with increasing concentrations of NaI quencher. When the NaI concentration was 12.2 M, a monoexponential decay with a lifetime as short as 17 ps was exactly determined for the first time using the femtosecond-resolved upconversion system. Picosecond time-resolved fluorescence measurements of circular permuted green and yellow fluorescent proteins (cpGFP and cpYFP) were reported, demonstrating that the fluorescence decay of quenched fluorescein sodium is a better approximation of the instrument response function (IRF) needed for the accurate deconvolution of fluorescence lifetime data, particularly for detectors used in the visible spectral region. We believe that this picosecond lifetime standard will find wide applications in fluorescence lifetime imaging microscopy (FLIM).


Assuntos
Fluoresceína/química , Espectrometria de Fluorescência/métodos , Proteínas de Bactérias/química , Desenho de Equipamento , Fluorescência , Proteínas de Fluorescência Verde/química , Concentração de Íons de Hidrogênio , Luz , Proteínas Luminescentes/química , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Fótons , Padrões de Referência , Dióxido de Silício/química , Iodeto de Sódio/farmacologia , Espectrometria de Fluorescência/instrumentação , Tempo
19.
Front Physiol ; 5: 176, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860510

RESUMO

Breast cancer is the most common type of cancer among women and despite recent advances in the medical field, there are still some inherent limitations in the currently used screening techniques. The radiological interpretation of screening X-ray mammograms often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful biopsies. Here we propose a computer-aided multifractal analysis of dynamic infrared (IR) imaging as an efficient method for identifying women with risk of breast cancer. Using a wavelet-based multi-scale method to analyze the temporal fluctuations of breast skin temperature collected from a panel of patients with diagnosed breast cancer and some female volunteers with healthy breasts, we show that the multifractal complexity of temperature fluctuations observed in healthy breasts is lost in mammary glands with malignant tumor. Besides potential clinical impact, these results open new perspectives in the investigation of physiological changes that may precede anatomical alterations in breast cancer development.

20.
J Biomed Opt ; 19(3): 36007, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24615643

RESUMO

We propose a two-dimensional (2-D) space-scale analysis of fringe patterns collected from a diffraction phase microscope based on the 2-D Morlet wavelet transform. We show that the adaptation of a ridge detection method with anisotropic 2-D Morlet mother wavelets is more efficient for analyzing cellular and high refractive index contrast objects than Fourier filtering methods since it can separate phase from intensity modulations. We compare the performance of this ridge detection method on theoretical and experimental images of polymer microbeads and experimental images collected from living myoblasts.


Assuntos
Técnicas Citológicas/métodos , Microscopia de Interferência/métodos , Análise de Ondaletas , Animais , Linhagem Celular , Camundongos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA