Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 129(12): 1949-1955, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37932513

RESUMO

BACKGROUND: Methods to improve stratification of small (≤15 mm) lung nodules are needed. We aimed to develop a radiomics model to assist lung cancer diagnosis. METHODS: Patients were retrospectively identified using health records from January 2007 to December 2018. The external test set was obtained from the national LIBRA study and a prospective Lung Cancer Screening programme. Radiomics features were extracted from multi-region CT segmentations using TexLab2.0. LASSO regression generated the 5-feature small nodule radiomics-predictive-vector (SN-RPV). K-means clustering was used to split patients into risk groups according to SN-RPV. Model performance was compared to 6 thoracic radiologists. SN-RPV and radiologist risk groups were combined to generate "Safety-Net" and "Early Diagnosis" decision-support tools. RESULTS: In total, 810 patients with 990 nodules were included. The AUC for malignancy prediction was 0.85 (95% CI: 0.82-0.87), 0.78 (95% CI: 0.70-0.85) and 0.78 (95% CI: 0.59-0.92) for the training, test and external test datasets, respectively. The test set accuracy was 73% (95% CI: 65-81%) and resulted in 66.67% improvements in potentially missed [8/12] or delayed [6/9] cancers, compared to the radiologist with performance closest to the mean of six readers. CONCLUSIONS: SN-RPV may provide net-benefit in terms of earlier cancer diagnosis.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos , Radiologistas , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA