Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114016, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38636520

RESUMO

How cancer cells determine their shape in response to three-dimensional (3D) geometric and mechanical cues is unclear. We develop an approach to quantify the 3D cell shape of over 60,000 melanoma cells in collagen hydrogels using high-throughput stage-scanning oblique plane microscopy (ssOPM). We identify stereotypic and environmentally dependent changes in shape and protrusivity depending on whether a cell is proximal to a flat and rigid surface or is embedded in a soft environment. Environmental sensitivity metrics calculated for small molecules and gene knockdowns identify interactions between the environment and cellular factors that are important for morphogenesis. We show that the Rho guanine nucleotide exchange factor (RhoGEF) TIAM2 contributes to shape determination in environmentally independent ways but that non-muscle myosin II, microtubules, and the RhoGEF FARP1 regulate shape in ways dependent on the microenvironment. Thus, changes in cancer cell shape in response to 3D geometric and mechanical cues are modulated in both an environmentally dependent and independent fashion.


Assuntos
Forma Celular , Fatores de Troca do Nucleotídeo Guanina , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Linhagem Celular Tumoral , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Melanoma/patologia , Melanoma/metabolismo
2.
Commun Biol ; 5(1): 1178, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369329

RESUMO

Cancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to 'excitable' tissues, relatively little is known about cancer cell Vm dynamics. Here high-throughput, cellular-resolution Vm imaging reveals that Vm fluctuates dynamically in several breast cancer cell lines compared to non-cancerous MCF-10A cells. We characterize Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identify four classes ranging from "noisy" to "blinking/waving". The Vm of MDA-MB-231 cells exhibits spontaneous, transient hyperpolarizations inhibited by the voltage-gated sodium channel blocker tetrodotoxin, and by calcium-activated potassium channel inhibitors apamin and iberiotoxin. The Vm of MCF-10A cells is comparatively static, but fluctuations increase following treatment with transforming growth factor-ß1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations may be a property of hybrid epithelial-mesenchymal cells or those originated from luminal progenitors.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Células MCF-7 , Potenciais da Membrana
3.
Sci Data ; 9(1): 395, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817775

RESUMO

When used in combination with hormone treatment, Palbociclib prolongs progression-free survival of patients with hormone receptor positive breast cancer. Mechanistically, Palbociclib inhibits CDK4/6 activity but the basis for differing sensitivity of cancer to Palbociclib is poorly understood. A common observation in a subset of Triple Negative Breast Cancers (TNBCs) is that prolonged CDK4/6 inhibition can engage a senescence-like state where cells exit the cell cycle, whilst, remaining metabolically active. To better understand the senescence-like cell state which arises after Palbociclib treatment we used mass spectrometry to quantify the proteome, phosphoproteome, and secretome of Palbociclib-treated MDA-MB-231 TNBC cells. We observed altered levels of cell cycle regulators, immune response, and key senescence markers upon Palbociclib treatment. These datasets provide a starting point for the derivation of biomarkers which could inform the future use CDK4/6 inhibitors in TNBC subtypes and guide the development of potential combination therapies.


Assuntos
Neoplasias de Mama Triplo Negativas , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Proteoma , Proteômica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Sci Data ; 4: 170018, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248929

RESUMO

In order to metastasise, triple negative breast cancer (TNBC) must make dynamic changes in cell shape. The shape of all eukaryotic cells is regulated by Rho Guanine Nucleotide Exchange Factors (RhoGEFs), which activate Rho-family GTPases in response to mechanical and informational cues. In contrast, Rho GTPase-activating proteins (RhoGAPs) inhibit Rho GTPases. However, which RhoGEFs and RhoGAPS couple TNBC cell shape to changes in their environment is very poorly understood. Moreover, whether the activity of particular RhoGEFs and RhoGAPs become dysregulated as cells evolve the ability to metastasise is not clear. Towards the ultimate goal of identifying RhoGEFs and RhoGAPs that are essential for TNBC metastasis, we performed an RNAi screen to isolate RhoGEFs and RhoGAPs that contribute to the morphogenesis of the highly metastatic TNBC cell line LM2, and its less-metastatic parental cell line MDA-MB-231. For ~6 million cells from each cell line, we measured 127 different features following the depletion of 142 genes. Using a linear classifier scheme we also describe the morphological heterogeneity of each gene-depleted population.


Assuntos
Proteínas Ativadoras de GTPase , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Interferência de RNA , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia
5.
PLoS Med ; 13(2): e1001961, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26881778

RESUMO

BACKGROUND: The intra-tumor diversity of cancer cells is under intense investigation; however, little is known about the heterogeneity of the tumor microenvironment that is key to cancer progression and evolution. We aimed to assess the degree of microenvironmental heterogeneity in breast cancer and correlate this with genomic and clinical parameters. METHODS AND FINDINGS: We developed a quantitative measure of microenvironmental heterogeneity along three spatial dimensions (3-D) in solid tumors, termed the tumor ecosystem diversity index (EDI), using fully automated histology image analysis coupled with statistical measures commonly used in ecology. This measure was compared with disease-specific survival, key mutations, genome-wide copy number, and expression profiling data in a retrospective study of 510 breast cancer patients as a test set and 516 breast cancer patients as an independent validation set. In high-grade (grade 3) breast cancers, we uncovered a striking link between high microenvironmental heterogeneity measured by EDI and a poor prognosis that cannot be explained by tumor size, genomics, or any other data types. However, this association was not observed in low-grade (grade 1 and 2) breast cancers. The prognostic value of EDI was superior to known prognostic factors and was enhanced with the addition of TP53 mutation status (multivariate analysis test set, p = 9 × 10-4, hazard ratio = 1.47, 95% CI 1.17-1.84; validation set, p = 0.0011, hazard ratio = 1.78, 95% CI 1.26-2.52). Integration with genome-wide profiling data identified losses of specific genes on 4p14 and 5q13 that were enriched in grade 3 tumors with high microenvironmental diversity that also substratified patients into poor prognostic groups. Limitations of this study include the number of cell types included in the model, that EDI has prognostic value only in grade 3 tumors, and that our spatial heterogeneity measure was dependent on spatial scale and tumor size. CONCLUSIONS: To our knowledge, this is the first study to couple unbiased measures of microenvironmental heterogeneity with genomic alterations to predict breast cancer clinical outcome. We propose a clinically relevant role of microenvironmental heterogeneity for advanced breast tumors, and highlight that ecological statistics can be translated into medical advances for identifying a new type of biomarker and, furthermore, for understanding the synergistic interplay of microenvironmental heterogeneity with genomic alterations in cancer cells.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , DNA de Neoplasias/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Estadiamento de Neoplasias , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA