Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11544, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773148

RESUMO

Arsenic contamination not only complicates mineral processing but also poses environmental and health risks. To address these challenges, this research investigates the feasibility of utilizing Hyperspectral imaging combined with machine learning techniques for the identification of arsenic-containing minerals in copper ore samples, with a focus on practical application in sorting and processing operations. Through experimentation with various copper sulfide ores, Neighborhood Component Analysis (NCA) was employed to select essential wavelength bands from Hyperspectral data, subsequently used as inputs for machine learning algorithms to identify arsenic concentrations. Results demonstrate that by selecting a subset of informative bands using NCA, accurate mineral identification can be achieved with a significantly reduced the size of dataset, enabling efficient processing and analysis. Comparison with other wavelength selection methods highlights the superiority of NCA in optimizing classification accuracy. Specifically, the identification accuracy showed 91.9% or more when utilizing 8 or more bands selected by NCA and was comparable to hyperspectral data analysis with 204 bands. The findings suggest potential for cost-effective implementation of multispectral cameras in mineral processing operations. Future research directions include refining machine learning algorithms, exploring broader applications across diverse ore types, and integrating hyperspectral imaging with emerging sensor technologies for enhanced mineral processing capabilities.

2.
Chemosphere ; 354: 141735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499075

RESUMO

In Japan, the concentration of fluoride (F-) leached from rocks, such as tuff breccia, excavated in tunnel construction projects often exceeds the Japanese environmental standard of 0.8 mg/L. Because of this, proper disposal methods are necessary for managing F--bearing excavated rocks. One effective solution based on circular economy is the use of an adsorption layer system. This system can simultaneously prevent the migration of F- released from excavated rocks and allow the recycling of this construction waste material. To determine the most suitable material for the disposal of excavated F--bearing tuff breccia from a tunnel construction in Hokkaido, Japan, four types of natural geological materials (S-1, S-2, S-3, and S-4) obtained near the tunnel construction site, as well as three types of commercial adsorbents (calcium (Ca), magnesium (Mg), and CaMg adsorbents) were selected for evaluation. The batch adsorption test results showed that S-1 and S-4 had high adsorption capacities for F-, and the adsorption process followed the Langmuir isotherm. The adsorption of F- to the natural adsorbents was strongly influenced by the pH and the presence of bicarbonate ions (HCO3-), but unaffected by chloride (Cl-) and sulfate (SO42-). There was also a strong positive correlation between the abundance of amorphous aluminum (Al) and iron (Fe) extracted and the adsorption of F-, indicating the importance of ion exchange reactions associated with surface OH- in immobilizing F-. Meanwhile, the Mg-bearing adsorbent exhibited the highest adsorption affinity for F- among the commercial adsorbents. This was attributed to adsorption through electrostatic interactions and coprecipitation with magnesium hydroxide (Mg(OH)2) formed during the hydration of magnesium oxide (MgO). To effectively incorporate these adsorbents into the adsorption layer system, parameters such as permeability and residence time need to be determined in order to maximize the retention of F- through adsorption, ion exchange and coprecipitation reactions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Fluoretos , Purificação da Água/métodos , Óxido de Magnésio , Alumínio , Magnésio , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
3.
Environ Geochem Health ; 46(2): 64, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319371

RESUMO

This study explored the legacy impact of Zinc plant residues (ZPRs) in Kabwe, Zambia, on the environment and human health, particularly in light of the town's reputation for Pb pollution. ZPRs solid samples and groundwater within and around ZPRs zone were collected from the legacy mine, along with soils in a 10 km radius from the mine site. Bioaccessible fractions of Pb and Zn were elucidated by Japanese leaching test (JLT) and simple bioaccessibility extraction test (SBET). Cationic speciation of Pb and Zn from inhalable and ingestible ZPRs particles was investigated via sequential extraction. Groundwater in the ZPRs area showed higher Zn levels (1490 mg/L) compared to Pb (1.7 mg/L). Elevated Zn concentration were facilitated by the presence of soluble Zn sulfates while Pb was constrained due to its precipitation as anglesite. Groundwater sampled outside the ZPRs area was within the Zambia regulatory limits (< 0.5 mg/L for Pb and < 1 mg/L for Zn). Inhalation exposure to < 30 µm dust particles from ZPRs and soils near the mine indicated negligible risk, with < 3% of bioaccessible Pb in artificial lysosomal fluid. Meanwhile, oral intake of ZPRs particles < 250 µm revealed elevated bioaccessible fractions (36% for Pb and 70% for Zn). ZPRs cationic speciation of ingestible particles < 30 µm, 30-75 µm, 75-150 µm and 150-250 µm indicated that the bioaccessible Pb predominantly emanated from labile Pb fractions under gastric conditions with pH < 1. This was due to the dissolution of Pb associated with the exchangeable phase, carbonates and iron/manganese oxides; however, only exchangeable/carbonate Pb was bioaccessible at pH < 2. Hazard quotients indicated increased risks of Pb intoxication through the ingestion of ZPRs and soils near the legacy mine, with higher risks observed in children, emphasizing the need to remediate legacy mine wastes to reduce health risks and protect groundwater through monitoring in mining-affected regions.


Assuntos
Água Subterrânea , Chumbo , Criança , Humanos , Zinco , Manganês , Poeira
4.
PLoS One ; 18(5): e0286203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220165

RESUMO

At a sedimentary site in an old mine site, Miscanthus sinensis formed patches, where Pinus densiflora seedlings could grow better compared with those outside the patches, indicating that M. sinensis would improve P. densiflora seedling establishment. The purpose of this study was to understand the mechanisms by which M. sinensis facilitates the survival of P. densiflora seedlings by considering the soil properties, heavy metal tolerance, and root endophytes in P. densiflora seedlings at the sedimentary site. The sedimentary site, which is a bare ground, contained high concentrations of Fe, indicating that plants should be exposed to Fe and high soil temperature stresses. Measurement of soil temperature revealed that M. sinensis suppressed sharp increases and alternation of soil temperature, resulting in reducing high soil temperature stress in P. densiflora seedlings. To adapt to the Fe stress environment, P. densiflora outside and inside the patches produced Fe detoxicants, including catechin, condensed tannin, and malic acid. Ceratobasidium bicorne and Aquapteridospora sp. were commonly isolated from P. densiflora seedlings outside and inside the patches as root endophytes, which might enhance Fe tolerance in the seedlings. Aquapteridospora sp., which is considered as a dark-septate endophyte (DSE), was also isolated from the roots of M. sinensis, suggesting that M. sinensis might play a source of a root endophyte to P. densiflora seedlings. Ceratobasidium bicorne could be classified into root endophytes showing symbiosis and weak pathogenicity to host plants. Therefore, high soil temperature stress would weaken P. densiflora seedlings, causing root endophytic C. bicorne to appear pathogenic. We suggested that P. densiflora could adapt to the Fe stress environment via producing Fe detoxicants, and M. sinensis would facilitate the establishment of P. densiflora seedlings in the sedimentary site by providing a DSE, Aquapteridospora sp., and maintaining symbiosis of C. bicorne from high soil temperature stress.


Assuntos
Endófitos , Pinus , Simbiose , Plântula , Temperatura , Poaceae , Febre , Solo
5.
J Hazard Mater ; 438: 129453, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35797786

RESUMO

Historical tailings storage facilities (TSFs) are either abandoned or sparsely rehabilitated promoting acid mine drainage (AMD) formation and heavy metal release. To sustainably manage these sites, a geochemical audit coupled with numerical simulation to predict AMD flow paths and heavy metal migration are valuable. In this study, a 40-year-old TSF in Hokkaido, Japan was investigated. Tailings in this historical TSF contain pyrite (FeS2) while its copper (Cu) and zinc (Zn) contents were 1400-6440 mg/kg and 2800-22,300 mg/kg, respectively. Copper and Zn were also easily released in leaching tests because they are partitioned with the exchangeable phase (29% of Zn; 15% of Cu) and oxidizable fraction (25% of Zn; 33% of Cu). Kinetic modeling results attributed AMD formation to the interactions of pyrite and soluble phases in the tailings with oxygenated groundwater, which is supported by the sequential extraction and leaching results. Calibrations of groundwater/AMD flow and solute transport in the 2D reactive transport model were successfully done using hydraulic heads measured on-site and leaching results, respectively. The model forecasted the quality of AMD to deteriorate with time and AMD formation to continue for 1000 years. It also predicted ~24% AMD flux reduction, including lower Zn release with time when recharge reduction interventions are implemented on-site.


Assuntos
Metais Pesados , Zinco , Cobre , Monitoramento Ambiental/métodos , Japão , Metais Pesados/análise , Mineração
6.
Plants (Basel) ; 12(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616165

RESUMO

Chaetomium cupreum, a root endophyte in Miscanthus sinensis, enhances Al tolerance in M. sinensis by changing aluminum (Al) localization and the production of a siderophore, oosporein, which chelates Al for detoxification. Oosporein has various functions, including insecticidal activity, phytotoxicity, antifungal activity, and a siderophore. In our study, we focused on the detoxification effect of oosporein as a siderophore and on the growth of M. sinensis under Al exposure. In addition, the phytotoxicity of oosporein to M. sinensis was confirmed to compare with those in Lactuca sativa and Oryza sativa as control plants. Under Al stress, oosporein promoted plant growth in M. sinensis seedlings at 10 ppm, which was the same concentration as that detected in M. sinensis roots infected with C. cupreum in our previous study. Oosporein also showed low phytotoxicity to M. sinensis compared with L. sativa at even high concentrations of oosporein. These results suggest that the concentration of oosporein in M. sinensis roots would be maintained at the appropriate concentration to detoxify Al and would promote M. sinensis growth under Al stress, although oosporein would show low phytotoxicity to the natural host plant, M. sinensis, compared with the non-host plant, L. sativa.

7.
Chemosphere ; 188: 444-454, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28892774

RESUMO

Predicting the fates of arsenic (As) and selenium (Se) in natural geologic media like rocks and soils necessitates the understanding of how their various oxyanionic species behave and migrate under dynamic conditions. In this study, geochemical factors and processes crucial in the leaching and transport of arsenite (AsIII), arsenate (AsV), selenite (SeIV) and selenate (SeVI) in tunnel-excavated rocks of marine origin were investigated using microscopic/extraction techniques, column experiments, dissolution-precipitation kinetics and one-dimensional reactive transport modeling. The results showed that evaporite salts were important because aside from containing As and Se, they played crucial roles in the evolution of pH and concentrations of coexisting ions, both of which had strong effects on adsorption-desorption reactions of As and Se species with iron oxyhydroxide minerals/phases. The observed leaching trends of AsV, AsIII, SeIV and SeVI were satisfactorily simulated by one-dimensional reactive transport models, which predict that preferential adsorptions of AsV and SeIV were magnified by geochemical changes in the columns due to water flow. Moreover, our results showed that migrations of AsIII, SeIV and SeVI could be predicted adequately by 1D solute transport with simple activity-K'd approach, but surface complexation was more reliable to simulate adsorption-desorption behavior of AsV.


Assuntos
Arsenicais/análise , Sedimentos Geológicos/química , Minerais/química , Modelos Químicos , Compostos de Selênio/análise , Poluentes Químicos da Água/análise , Adsorção , Arsenicais/química , Cinética , Oxirredução , Compostos de Selênio/química , Solubilidade , Movimentos da Água , Poluentes Químicos da Água/química
8.
Chemosphere ; 186: 558-569, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28810224

RESUMO

Rocks excavated in tunnel construction projects for roads and railways throughout Japan often leached out hazardous trace elements like arsenic (As) and selenium (Se) upon their exposure to the environment. In nature, the various oxyanionic species of As and Se not only coexist but also exhibit contrasting adsorption-desorption behaviors, so speciation is a crucial factor in their migration through natural geologic media. In this study, the leaching and transport of arsenite (AsIII), arsenate (AsV), selenite (SeIV) and selenate (SeVI) in four tunnel-excavated rocks from the Cretaceous-Paleocene Yezo forearc basin were investigated using laboratory column experiments supplemented by batch leaching experiments. The single- and consecutive-batch leaching results revealed that AsIII, AsV, SeIV and SeVI were released simultaneously, which could be attributed to the rapid dissolution of trace evaporite salts found in the rocks. Arsenic in the leachates was also predominated by AsV while SeIV and SeVI concentrations were nearly equal, which are both consistent with predictions of equilibrium Eh-pH diagrams. Under intermittent and unsaturated flow, however, periods when AsIII and SeVI predominated in the effluents were observed. Spatial distributions of As and Se species with depth at the end of the column experiments suggest that migrations of AsIII, AsV and SeIV were delayed, the extent of which depended on the rock. These results indicate that migration and speciation of As and Se in the rocks are controlled by preferential adsorption-desorption reactions, the effects of which were most probably magnified by changes in the pH and concentrations of coexisting ions due to intermittent and unsaturated flow.


Assuntos
Arseniatos/análise , Arsenitos/análise , Sedimentos Geológicos/química , Minerais/química , Ácido Selênico/análise , Ácido Selenioso/análise , Adsorção , Japão , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA