Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(9): 104882, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36060054

RESUMO

In this study, we synthesized and evaluated new photoswitchable ligands for the beta-adrenergic receptors ß1-AR and ß2-AR, applying an azologization strategy to the first-generation beta-blocker propranolol. The resulting compounds (Opto-prop-1, -2, -3) have good photochemical properties with high levels of light-induced trans-cis isomerization (>94%) and good thermal stability (t 1/2 > 10 days) of the resulting cis-isomer in an aqueous buffer. Upon illumination with 360-nm light to PSS cis , large differences in binding affinities were observed for photoswitchable compounds at ß1-AR as well as ß2-AR. Notably, Opto-prop-2 (VUF17062) showed one of the largest optical shifts in binding affinities at the ß2-AR (587-fold, cis-active), as recorded so far for photoswitches of G protein-coupled receptors. We finally show the broad utility of Opto-prop-2 as a light-dependent competitive antagonist of the ß2-AR as shown with a conformational ß2-AR sensor, by the recruitment of downstream effector proteins and functional modulation of isolated adult rat cardiomyocytes.

2.
Bioorg Med Chem Lett ; 61: 128607, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123006

RESUMO

We report a significant decrease in transcription of the G protein-coupled receptor GPR39 in striatal neurons of Parkinson's disease patients compared to healthy controls, suggesting that a positive modulator of GPR39 may beneficially impact neuroprotection. To test this notion, we developed various structurally diverse tool molecules. While we elaborated on previously reported starting points, we also performed an in silico screen which led to completely novel pharmacophores. In vitro studies indicated that GPR39 agonism does not have a profound effect on neuroprotection.


Assuntos
Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
3.
Proc Natl Acad Sci U S A ; 117(46): 29144-29154, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33148803

RESUMO

Although class A G protein-coupled receptors (GPCRs) can function as monomers, many of them form dimers and oligomers, but the mechanisms and functional relevance of such oligomerization is ill understood. Here, we investigate this problem for the CXC chemokine receptor 4 (CXCR4), a GPCR that regulates immune and hematopoietic cell trafficking, and a major drug target in cancer therapy. We combine single-molecule microscopy and fluorescence fluctuation spectroscopy to investigate CXCR4 membrane organization in living cells at densities ranging from a few molecules to hundreds of molecules per square micrometer of the plasma membrane. We observe that CXCR4 forms dynamic, transient homodimers, and that the monomer-dimer equilibrium is governed by receptor density. CXCR4 inverse agonists that bind to the receptor minor pocket inhibit CXCR4 constitutive activity and abolish receptor dimerization. A mutation in the minor binding pocket reduced the dimer-disrupting ability of these ligands. In addition, mutating critical residues in the sixth transmembrane helix of CXCR4 markedly diminished both basal activity and dimerization, supporting the notion that CXCR4 basal activity is required for dimer formation. Together, these results link CXCR4 dimerization to its density and to its activity. They further suggest that inverse agonists binding to the minor pocket suppress both dimerization and constitutive activity and may represent a specific strategy to target CXCR4.


Assuntos
Dimerização , Microscopia de Fluorescência/métodos , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutação , Conformação Proteica , Multimerização Proteica , Receptores CXCR4/genética , Receptores CXCR4/imunologia , Receptores de Quimiocinas
4.
J Med Chem ; 62(23): 10848-10866, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675226

RESUMO

Despite the high diversity of histamine H3 receptor (H3R) antagonist/inverse agonist structures, partial or full H3R agonists have typically been imidazole derivatives. An in-house screening campaign intriguingly afforded the non-imidazole 4-(3-azetidin-1-yl)pyrimidin-2-amine 11b as a partial H3R agonist. Here, the design, synthesis, and structure-activity relationships of 11b analogues are described. This series yields several non-imidazole full agonists with potencies varying with the alkyl substitution pattern on the basic amine following the in vitro evaluation of H3R agonism using a cyclic adenosine monophosphate response element-luciferase reporter gene assay. The key compound VUF16839 (14d) combines nanomolar on-target activity (pKi = 8.5, pEC50 = 9.5) with weak activity on cytochrome P450 enzymes and good metabolic stability. The proposed H3R binding mode of 14d indicates key interactions similar to those attained by histamine. In vivo evaluation of 14d in a social recognition test in mice revealed an amnesic effect at 5 mg/kg intraperitoneally. The excellent in vitro and in vivo pharmacological profiles and the non-imidazole structure of 14d make it a promising tool compound in H3R research.


Assuntos
Aminas/síntese química , Aminas/farmacologia , Agonistas dos Receptores Histamínicos/síntese química , Agonistas dos Receptores Histamínicos/farmacologia , Aminas/química , Animais , Comportamento Animal/efeitos dos fármacos , Células HEK293 , Agonistas dos Receptores Histamínicos/química , Humanos , Memória/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Comportamento Social
5.
Mol Pharmacol ; 96(6): 753-764, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31481460

RESUMO

Dysregulation of the chemokine system is implicated in a number of autoimmune and inflammatory diseases, as well as cancer. Modulation of chemokine receptor function is a very promising approach for therapeutic intervention. Despite interest from academic groups and pharmaceutical companies, there are currently few approved medicines targeting chemokine receptors. Monoclonal antibodies (mAbs) and antibody-based molecules have been successfully applied in the clinical therapy of cancer and represent a potential new class of therapeutics targeting chemokine receptors belonging to the class of G protein-coupled receptors (GPCRs). Besides conventional mAbs, single-domain antibodies and antibody scaffolds are also gaining attention as promising therapeutics. In this review, we provide an extensive overview of mAbs, single-domain antibodies, and other antibody fragments targeting CXCR4 and ACKR3, formerly referred to as CXCR7. We discuss their unique properties and advantages over small-molecule compounds, and also refer to the molecules in preclinical and clinical development. We focus on single-domain antibodies and scaffolds and their utilization in GPCR research. Additionally, structural analysis of antibody binding to CXCR4 is discussed. SIGNIFICANCE STATEMENT: Modulating the function of GPCRs, and particularly chemokine receptors, draws high interest. A comprehensive review is provided for monoclonal antibodies, antibody fragments, and variants directed at CXCR4 and ACKR3. Their advantageous functional properties, versatile applications as research tools, and use in the clinic are discussed.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Receptores CXCR/antagonistas & inibidores , Receptores CXCR4/antagonistas & inibidores
6.
Mol Pharmacol ; 96(6): 737-752, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548340

RESUMO

The two G protein-coupled receptors (GPCRs) C-X-C chemokine receptor type 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) are part of the class A chemokine GPCR family and represent important drug targets for human immunodeficiency virus (HIV) infection, cancer, and inflammation diseases. CXCR4 is one of only three chemokine receptors with a US Food and Drug Administration approved therapeutic agent, the small-molecule modulator AMD3100. In this review, known modulators of the two receptors are discussed in detail. Initially, the structural relationship between receptors and ligands is reviewed on the basis of common structural motifs and available crystal structures. To date, no atypical chemokine receptor has been crystallized, which makes ligand design and predictions for these receptors more difficult. Next, the selectivity, receptor activation, and the resulting ligand-induced signaling output of chemokines and other peptide ligands are reviewed. Binding of pepducins, a class of lipid-peptides whose basis is the internal loop of a GPCR, to CXCR4 is also discussed. Finally, small-molecule modulators of CXCR4 and ACKR3 are reviewed. These modulators have led to the development of radio- and fluorescently labeled tool compounds, enabling the visualization of ligand binding and receptor characterization both in vitro and in vivo. SIGNIFICANCE STATEMENT: To investigate the pharmacological modulation of CXCR4 and ACKR3, significant effort has been focused on the discovery and development of a range of ligands, including small-molecule modulators, pepducins, and synthetic peptides. Imaging tools, such as fluorescent probes, also play a pivotal role in the field of drug discovery. This review aims to provide an overview of the aforementioned modulators that facilitate the study of CXCR4 and ACKR3 receptors.


Assuntos
Receptores CXCR4/fisiologia , Receptores CXCR/fisiologia , Sequência de Aminoácidos , Animais , Benzilaminas , Ciclamos , Compostos Heterocíclicos/metabolismo , Compostos Heterocíclicos/farmacologia , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores CXCR/agonistas , Receptores CXCR/antagonistas & inibidores , Receptores CXCR4/agonistas , Receptores CXCR4/antagonistas & inibidores
7.
Mol Pharmacol ; 96(6): 765-777, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31266800

RESUMO

Chemokine receptors belong to the class A of G protein-coupled receptors (GPCRs) and are implicated in a wide variety of physiologic functions, mostly related to the homeostasis of the immune system. Chemokine receptors are also involved in multiple pathologic processes, including immune and autoimmune diseases, as well as cancer. Hence, several members of this GPCR subfamily are considered to be very relevant therapeutic targets. Since drug discovery efforts can be significantly reinforced by the availability of crystal structures, substantial efforts in the area of chemokine receptor structural biology could dramatically increase the outcome of drug discovery campaigns. This short review summarizes the available data on chemokine receptor crystal structures, discusses the numerous applications from chemokine receptor structures that can enhance the daily work of molecular pharmacologists, and describes the challenges and pitfalls to consider when relying on crystal structures for further research applications. SIGNIFICANCE STATEMENT: This short review summarizes the available data on chemokine receptor crystal structures, discusses the numerous applications from chemokine receptor structures that can enhance the daily work of molecular pharmacologists, and describes the challenges and pitfalls to consider when relying on crystal structures for further research applications.


Assuntos
Receptores de Quimiocinas/química , Receptores de Quimiocinas/metabolismo , Animais , Cristalografia por Raios X/métodos , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
8.
Biochem Pharmacol ; 158: 413-424, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342023

RESUMO

Upregulation of the chemokine receptor CXCR4 contributes to the progression and metastasis of both solid and hematological malignancies, rendering this receptor an attractive therapeutic target. Besides the only FDA-approved CXCR4 antagonist Plerixafor (AMD3100), multiple other classes of CXCR4-targeting molecules are under (pre-)clinical development. Nanobodies (Nb), small single variable domains of heavy-chain only antibodies from Camelids, have appeared to be ideal antibody-fragments for targeting a broad range of epitopes and cavities within GPCRs such as CXCR4. Compared to conventional antibodies, monovalent nanobodies show fast blood clearance and no effector functions. In order to further increase their binding affinities and to restore antibody-mediated effector functions, we have constructed three different bivalent nanobody Fc-fusion molecules (Nb-Fc), targeting distinct epitopes on CXCR4, via fusion of Nbs to a Fc domain of a human IgG1 antibody. Most Nb-Fc constructs show increased binding affinity and enhanced potency in CXCL12 displacement, inhibition of CXCL12-induced signaling and CXCR4-mediated HIV entry, when compared to their monovalent Nb counterparts. Moreover, Nb-Fc induced ADCC- and CDC-mediated cell-death of CXCR4-overexpressing CCRF-CEM leukemia cells and did not affect cells expressing low levels or no CXCR4. These highly potent CXCR4 Nb-Fc constructs with Fc-mediated effector functions are attractive molecules to therapeutically target CXCR4-overexpressing tumors.


Assuntos
Inibidores da Fusão de HIV/administração & dosagem , Imunoglobulina G/administração & dosagem , Receptores CXCR4/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Domínio Único/administração & dosagem , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Imunoglobulina G/química , Células Jurkat , Estrutura Secundária de Proteína , Receptores CXCR4/metabolismo , Transdução de Sinais/fisiologia , Anticorpos de Domínio Único/química
9.
Biochem Pharmacol ; 158: 402-412, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342024

RESUMO

The chemokine receptor CXCR4 and its ligand CXCL12 contribute to a variety of human diseases, such as cancer. CXCR4 is also a major co-receptor facilitating HIV entry. Accordingly, CXCR4 is considered as an attractive therapeutic target. Drug side effects and poor pharmacokinetic properties have been major hurdles that have prevented the implementation of CXCR4-directed inhibitors in treatment regimes. We evaluated the activity of a new and promising class of biologics, namely CXCR4-targeting nanobodies, with the purpose of identifying nanobodies that would preferentially inhibit HIV infection, while minimally disturbing other CXCR4-related functions. All CXCR4-interacting nanobodies inhibited CXCL12 binding and receptor-mediated calcium mobilization with comparable relative potencies. Importantly, the anti-HIV-1 activity of the nanobodies did not always correlate with their ability to modulate CXCR4 signaling and function, indicating that the anti-HIV and anti-CXCR4 activity are not entirely overlapping and may be functionally separated. Three nanobodies with divergent activity profiles (VUN400, VUN401 and VUN402) were selected for in depth biological evaluation. While all three nanobodies demonstrated inhibitory activity against a wide range of HIV (X4) strains, VUN402 poorly blocked CXCL12-induced CXCR4 internalization, chemotaxis and changes in cell morphology. Each of these nanobodies recognized distinct, although partially overlapping epitopes on CXCR4, which might underlie their distinct activity profiles. Our results demonstrate the potential of CXCR4-targeting nanobody VUN402 as a novel lead and starting point for the development of a more potent and selective anti-HIV agent.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Inibidores da Fusão de HIV/administração & dosagem , HIV-1/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/fisiologia , Anticorpos de Domínio Único/administração & dosagem , Animais , Camelídeos Americanos , Relação Dose-Resposta a Droga , Inibidores da Fusão de HIV/metabolismo , HIV-1/metabolismo , Humanos , Células Jurkat , Estrutura Secundária de Proteína , Ratos , Anticorpos de Domínio Único/metabolismo
10.
J Med Chem ; 60(12): 4735-4779, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28165741

RESUMO

This review focuses on the construction and application of structural chemokine receptor models for the elucidation of molecular determinants of chemokine receptor modulation and the structure-based discovery and design of chemokine receptor ligands. A comparative analysis of ligand binding pockets in chemokine receptors is presented, including a detailed description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures, and their implication for modeling molecular interactions of chemokine receptors with small-molecule ligands, peptide ligands, and large antibodies and chemokines. These studies demonstrate how the integration of new structural information on chemokine receptors with extensive structure-activity relationship and site-directed mutagenesis data facilitates the prediction of the structure of chemokine receptor-ligand complexes that have not been crystallized. Finally, a review of structure-based ligand discovery and design studies based on chemokine receptor crystal structures and homology models illustrates the possibilities and challenges to find novel ligands for chemokine receptors.


Assuntos
Receptores de Quimiocinas/química , Receptores de Quimiocinas/metabolismo , Relação Estrutura-Atividade , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Receptores CCR2/química , Receptores CCR2/metabolismo , Receptores CCR5/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Quimiocinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA