Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39000629

RESUMO

Based on organophosphorus branched polyols (AEPAs) synthesized using triethanolamine (TEOA), ortho-phosphoric acid (OPA), and polyoxyethylene glycol with MW = 400 (PEG), vapor-permeable polyurethane ionomers (AEPA-PEG-PUs) were obtained. During the synthesis of AEPAs, the reaction of the OPA etherification with polyoxyethylene glycol was studied in a wide temperature range and at different molar ratios of the starting components. It turned out that OPA simultaneously undergoes a catalytically activated etherification reaction with triethanolamine and PEG. After TEOA is fully involved in the etherification reaction, excess OPA does not react with the terminal hydroxyl groups of AEPA-PEG or the remaining amount of PEG. The ortho-phosphoric acid remaining in an unreacted state is involved in associative interactions with the phosphate ions of the AEPA. Increasing the synthesis temperature from 40 °C to 110 °C leads to an increase in OPA conversion. However, for the AEPA-PEG-PU based on AEPA-PEG obtained at 100 °C and 110 °C, ortho-phosphoric acid no longer enters into associative interactions with the phosphate ions of the AEPA. Due to the hydrophilicity of polyoxyethylene glycol, the presence of phosphate ions in the polyurethane structure, and their associative binding with the unreacted ortho-phosphoric acid, the diffusion of water molecules in polyurethanes is enhanced, and high values of vapor permeability and tensile strength were achieved.

2.
Membranes (Basel) ; 13(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37505008

RESUMO

We have synthesized cubic and linear polysiloxanes containing polyoxyethylene branches (ASiP-Cu) using tetraethoxysilane, polyoxyethylene glycol, and copper chloride as precursors; the products are stable to self-condensation. The effect of copper chloride content on the chemical structure of ASiP-Cu has been established. A special study was aimed at defining the modifying effect of ASiP-Cu on the sorption characteristics of membranes based on microporous, optically transparent block copolymers (OBCs). These OBCs were produced using 2,4-toluene diisocyanate and block copolymers of ethylene and propylene oxides. The study demonstrated significantly increased sorption capacity of the modified polymers. On the basis of the modified microporous block copolymers and 1-(2-pyridylazo)-2-naphthol (PAN) analytical reagent, an analytical test system has been developed. Additionally, the modified OBCs have the benefit of high diffusion permeability for molecules of organic dyes and metal ions. It has been shown that the volume of voids and structural features of their internal cavities contribute to the complex formation reaction involving PAN and copper chloride.

3.
J Phys Chem Lett ; 14(22): 5134-5140, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37252711

RESUMO

Nanoscale electrically driven light-emitting sources with tunable wavelength represent a milestone for implementation of integrated optoelectronic chips. Plasmonic nanoantennas exhibiting an enhanced local density of optical states (LDOS) and strong Purcell effect hold promise for fabrication of bright nanoscale light emitters. Here, we justify gold parabola-shaped nanobumps and their ordered arrays produced by direct ablation-free femtosecond laser printing as broadband plasmonic light sources electrically excited by a probe of scanning tunneling microscope (STM). I-V curves of the probe-nanoantenna tunnel junction reveal characteristic bias voltages correlating with visible-range localized (0.55 and 0.85 µm) and near-IR (1.65 and 1.87 µm) collective plasmonic modes of these nanoantennas. These multiband resonances confirmed by optical spectroscopy and full-wave simulations provide enhanced LDOS for efficient electrically driven and bias-tuned light emission. Additionally, our studies confirm remarkable applicability of STM for accurate study of optical modes supported by the plasmonic nanoantennas at nanoscale spatial resolution.

4.
J Phys Chem Lett ; 13(20): 4612-4620, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35588008

RESUMO

A micro- or nanosized electrically controlled source of optical radiation is one of the key elements in optoelectronic systems. The phenomenon of light emission via inelastic tunneling (LEIT) of electrons through potential barriers or junctions opens up new possibilities for development of such sources. In this work, we present a simple approach for fabrication of nanoscale electrically driven light sources based on LEIT. We employ STM lithography to locally modify the surface of a Si/Au film stack via heating, which is enabled by a high-density tunnel current. Using the proposed technique, hybrid Si/Au nanoantennas with a minimum diameter of 60 nm were formed. Studying both electronic and optical properties of the obtained nanoantennas, we confirm that the resulting structures can efficiently emit photons in the visible range because of inelastic scattering of electrons. The proposed approach allows for fabrication of nanosized hybrid nanoantennas and studying their properties using STM.

5.
Polymers (Basel) ; 13(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34685339

RESUMO

Organosubstituted silica derivatives were synthesized and investigated as modifiers of block copolymers based on macroinitiator and 2,4-toluene diisocyanate. A peculiarity of the modified block copolymers is the existence in their structure of coplanar rigid polyisocyanate blocks of acetal nature (O-polyisocyanates). Organosubstituted silica derivatives have a non-additive effect on high-temperature relaxation and α-transitions of modified polymers and exhibit the ability to influence the supramolecular structure of block copolymers. The use of the developed modifiers leads to a change in the gas transport properties of block copolymers. The increase of the permeability coefficients is due to the increase of the diffusion coefficients. At the same time, the gas solubility coefficients do not change. An increase in the ideal selectivity for a number of gas pairs is observed. An increase in the selectivity for the CO2/N2 gas pair (from 25 to 39) by 1.5 times demonstrates the promising use of this material for flue gases separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA