Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(19)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36231107

RESUMO

The dynamic regulation of the physical states of chromatin in the cell nucleus is crucial for maintaining cellular homeostasis. Chromatin can exist in solid- or liquid-like forms depending on the surrounding ions, binding proteins, post-translational modifications and many other factors. Several recent studies suggested that chromatin undergoes liquid-liquid phase separation (LLPS) in vitro and also in vivo; yet, controversial conclusions about the nature of chromatin LLPS were also observed from the in vitro studies. These inconsistencies are partially due to deviations in the in vitro buffer conditions that induce the condensation/aggregation of chromatin as well as to differences in chromatin (nucleosome array) constructs used in the studies. In this work, we present a detailed characterization of the effects of K+, Mg2+ and nucleosome fiber length on the physical state and property of reconstituted nucleosome arrays. LLPS was generally observed for shorter nucleosome arrays (15-197-601, reconstituted from 15 repeats of the Widom 601 DNA with 197 bp nucleosome repeat length) at physiological ion concentrations. In contrast, gel- or solid-like condensates were detected for the considerably longer 62-202-601 and lambda DNA (~48.5 kbp) nucleosome arrays under the same conditions. In addition, we demonstrated that the presence of reduced BSA and acetate buffer is not essential for the chromatin LLPS process. Overall, this study provides a comprehensive understanding of several factors regarding chromatin physical states and sheds light on the mechanism and biological relevance of chromatin phase separation in vivo.


Assuntos
Cromatina , Nucleossomos , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Íons/metabolismo , Nucleossomos/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163759

RESUMO

Changes in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in Escherichia coli grown using a specially developed device aboard the International Space Station. The morphology and metabolism of E. coli grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation. The magnetic force caused visible clustering of non-sedimenting bacteria that formed matrix-containing aggregates under SF + MF and MF conditions. Cell auto-aggregation was accompanied by up-regulation of glyoxylate shunt enzymes and Vitamin B12 transporter BtuB. Under SF and SF + MF but not MF conditions nutrition and oxygen limitations were manifested by the down-regulation of glycolysis and TCA enzymes and the up-regulation of methylglyoxal bypass. Bacteria grown under combined SF + MF conditions demonstrated superior up-regulation of enzymes of the methylglyoxal bypass and down-regulation of glycolysis and TCA enzymes compared to SF conditions, suggesting that the magnetic force strengthened the effects of microgravity on the bacterial metabolism. This strengthening appeared to be due to magnetic force-dependent bacterial clustering within a small volume that reinforced the effects of the microgravity-driven absence of convectional flows.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Técnicas Bacteriológicas/instrumentação , Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/genética , Técnicas Bacteriológicas/métodos , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Glicólise , Glioxilatos/metabolismo , Fenômenos Magnéticos , Oxigênio/metabolismo , Aldeído Pirúvico/metabolismo , Voo Espacial , Ausência de Peso
3.
Front Cell Dev Biol ; 8: 823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015039

RESUMO

The existence of niches of stem cells residence in the ventricular-subventricular zone and the subgranular zone in the adult brain is well-known. These zones are the sites of restoration of brain function after injury. Bioengineered scaffolds introduced in the damaged loci were shown to support neurogenesis to the injury area, thus representing a strategy to treat acute neurodegeneration. In this study, we explored the neuroprotective activity of the recombinant analog of Nephila clavipes spidroin 1 rS1/9 after its introduction into the ischemia-damaged brain. We used nestin-green fluorescent protein (GFP) transgenic reporter mouse line, in which neural stem/progenitor cells are easily visualized and quantified by the expression of GFP, to determine the alterations in the dentate gyrus (DG) after focal ischemia in the prefrontal cortex. Changes in the proliferation of neural stem/progenitor cells during the first weeks following photothrombosis-induced brain ischemia and in vitro effects of spidroin rS1/9 in rat primary neuronal cultures were the subject of the study. The introduction of microparticles of the recombinant protein rS1/9 into the area of ischemic damage to the prefrontal cortex leads to a higher proliferation rate and increased survival of progenitor cells in the DG of the hippocampus which functions as a niche of brain stem cells located at a distance from the injury zone. rS1/9 also increased the levels of a mitochondrial probe in DG cells, which may report on either an increased number of mitochondria and/or of the mitochondrial membrane potential in progenitor cells. Apparently, the stimulation of progenitor cells was caused by formed biologically active products stemming from rS1/9 biodegradation which can also have an effect upon the growth of primary cortical neurons, their adhesion, neurite growth, and the formation of a neuronal network. The high biological activity of rS1/9 suggests it as an excellent material for therapeutic usage aimed at enhancing brain plasticity by interacting with stem cell niches. Substances formed from rS1/9 can also be used to enhance primary neuroprotection resulting in reduced cell death in the injury area.

4.
Neuroreport ; 31(10): 770-775, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467514

RESUMO

Neural transplantation is a promising modality for treatment of neurodegenerative diseases, traumatic brain injury and stroke. Biocompatible scaffolds with optimized properties improve the survival of transplanted neural cells and differentiation of progenitor cells into the desired types of neurons. Silk fibroin is a biocompatible material for tissue engineering. Here, we describe thin-film scaffolds based on photocrosslinked methacrylated silk fibroin (FBMA). These scaffolds exhibit an increased mechanical stiffness and improved water stability. Photocrosslinking of fibroin increased its rigidity from 25 to 480 kPa and the contact angle from 59.7 to 70.8, the properties important for differentiation of neural cells. Differentiation of SH-SY5Y neuroblastoma cells on FBMA increased the length of neurites as well as the levels of neural differentiation markers MAP2 and ßIII-tubulin. Growth of SH-SY5Y cells on the unmodified fibroin and FBMA substrates led to a spontaneous phosphorylation of Src and Akt protein kinases critical for neuronal differentiation; this effect was paralleled by neural cell adhesion molecule elevation. Thus, FBMA is an easily manufactured, cytocompatible material with improved and sustainable properties applicable for neural tissue engineering.


Assuntos
Diferenciação Celular , Fibroínas/química , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Alicerces Teciduais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Células Cultivadas , Humanos
5.
Arch Oral Biol ; 114: 104716, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32325265

RESUMO

The present study aimed to assess the influence of centrifugation and inoculation time on the number, distribution, and viability of intratubular bacteria and surface monospecies E. faecalis biofilm. MATERIALS AND METHODS: Forty-four semicylindrical specimens cut from primary (n = 22) and permanent (n = 22) bovine teeth were randomly assigned to the experimental groups. Teeth of each type were inoculated with E. faecalis with and without centrifugation for 1 and 14 days. The number, localization, viability of bacteria and depth of their penetration were assessed with bacterial culturing of dentin shavings, scanning electron microscopy (SEM) and confocal laser electron microscopy (CLSM). Three-way ANOVA with post-hoc Tukey test were used to assess the influence of different experimental setups on dentin infection. RESULTS: Severe dentin infection was observed in permanent and deciduous teeth after centrifugation and 1-day incubation: bacteria reached the full length of dentinal tubules and colony-forming units were too numerous to count. The volume of green fluorescence didn't differ significantly in permanent teeth compared with deciduous (p = 1.0). After 1-day stationary inoculation, small number of cultivable bacteria and few viable bacteria in dentinal tubules were found in both groups. After 14-day stationary inoculation, the dentin infection according to CLSM was deeper in deciduous teeth compared with permanent (p = 0.006 and p = 0.019 for centrifugation and stationary inoculation, respectively). CONCLUSION: The most even and dense dentin infection was observed in primary and permanent bovine teeth after centrifugation and 1-day inoculation, and in deciduous teeth after 14-day stationary inoculation.


Assuntos
Biofilmes , Centrifugação , Dentina/microbiologia , Enterococcus faecalis , Viabilidade Microbiana , Animais , Bovinos , Microscopia Eletrônica de Varredura , Dente Decíduo/microbiologia
6.
PLoS One ; 10(11): e0141990, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26535905

RESUMO

Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane), applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain) dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters.


Assuntos
Anti-Infecciosos/farmacologia , Membrana Celular/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Anti-Infecciosos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Clorofilídeos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fármacos Fotossensibilizantes/química , Porfirinas/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA