Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847137

RESUMO

Water deficits inhibit plant growth and decrease crop productivity. Remedies are needed to counter this increasingly urgent problem in practical farming. One possible approach is to utilize rhizobacteria known to increase plant resistance to abiotic and other stresses. We therefore studied the effects of inoculating the culture medium of potato microplants grown in vitro with Azospirillum brasilense Sp245 or Ochrobactrum cytisi IPA7.2. Growth and hormone content of the plants were evaluated under stress-free conditions and under a water deficit imposed with polyethylene glycol (PEG 6000). Inoculation with either bacterium promoted the growth in terms of leaf mass accumulation. The effects were associated with increased concentrations of auxin and cytokinin hormones in the leaves and stems and with suppression of an increase in the leaf abscisic acid that PEG treatment otherwise promoted in the potato microplants. O. cytisi IPA7.2 had a greater growth-stimulating effect than A. brasilense Sp245 on stressed plants, while A. brasilense Sp245 was more effective in unstressed plants. The effects were likely to be the result of changes to the plant's hormonal balance brought about by the bacteria.


Assuntos
Azospirillum brasilense/fisiologia , Ochrobactrum/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Ácido Abscísico/metabolismo , Produção Agrícola/métodos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Citocininas/metabolismo , Secas , Ácidos Indolacéticos/metabolismo , Pressão Osmótica , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Polietilenoglicóis , Solanum tuberosum/crescimento & desenvolvimento
2.
Protoplasma ; 255(5): 1581-1594, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29637285

RESUMO

The aim of the present report was to demonstrate how a novel approach for immunohistochemical localization of cytokinins in the leaf and particularly in the phloem may complement to the study of their long-distance transport. Different procedures of fixation were used to conjugate either cytokinin bases or their ribosides to proteins of cytoplasm to enable visualization and differential localization of these cytokinins in the leaf cells of wheat plants. In parallel to immunolocalization of cytokinins in the leaf cells, we immunoassayed distribution of free bases of cytokinins, their nucleotides and ribosides between roots and shoots of wheat plants as well as their presence in phloem sap after incubation of leaves in a solution supplemented with either trans-zeatin or isopentenyladenine. The obtained data show ribosylation of the zeatin applied to the leaves and its elevated level in the phloem sap supported by in vivo localization showing the presence of ribosylated forms of zeatin in leaf vessels. This suggests that conversion of zeatin to its riboside is important for the shoot-to-root transport of zeatin-type cytokinins in wheat. Exogenous isopentenyladenine was not modified, but diffused from the leaves as free base. These metabolic differences may not be universal and may depend on the plant species and age. Although the measurements of cytokinins in the phloem sap and root tissue is the most defining for determining cytokinin transport, study of immunolocalization of either free cytokinin bases or their ribosylated forms may be a valuable source of information for predicting their transport in the phloem and to the roots.


Assuntos
Citocininas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triticum/metabolismo , Transporte Biológico , Isopenteniladenosina/metabolismo , Floema/metabolismo , Zeatina/metabolismo
3.
Plant Physiol Biochem ; 83: 285-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25201567

RESUMO

Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.


Assuntos
Aminoácidos/metabolismo , Bacillus subtilis/metabolismo , Citocininas/biossíntese , Rizoma , Triticum , Rizoma/metabolismo , Rizoma/microbiologia , Triticum/metabolismo , Triticum/microbiologia
4.
J Exp Bot ; 65(9): 2287-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24692646

RESUMO

Cytokinin flow from roots to shoots can serve as a long-distance signal important for root-to-shoot communication. In the past, changes in cytokinin flow from roots to shoots have been mainly attributed to changes in the rate of synthesis or breakdown in the roots. The present research tested the possibility that active uptake of cytokinin by root cells may also influence its export to shoots. To this end, we collapsed the proton gradient across root membranes using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to inhibit secondary active uptake of exogenous and endogenous cytokinins. We report the impact of CCCP on cytokinin concentrations and delivery in xylem sap and on accumulation in shoots of 7-day-old wheat plants in the presence and absence of exogenous cytokinin applied as zeatin. Zeatin treatment increased the total accumulation of cytokinin in roots and shoots but the effect was smaller for the shoots. Immunohistochemical localization of cytokinins using zeatin-specific antibodies showed an increase in immunostaining of the cells adjacent to xylem in the roots of zeatin-treated plants. Inhibition of secondary active cytokinin uptake by CCCP application decreased cytokinin accumulation in root cells but increased both flow from the roots and accumulation in the shoots. The possible importance of secondary active uptake of cytokinins by root cells for the control of their export to the shoot is discussed.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triticum/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Triticum/metabolismo
5.
J Plant Physiol ; 160(9): 1011-5, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14593801

RESUMO

Removing 4 out of 5 serminal roots from 7-day-old wheat seedlings arrested leaf elongation for 1.5 h. This effect can be explained by an initial decrease in foliar water content resulting from the smaller root surface area available for water uptake. Subsequently, leaf hydration increased with time and came to equal that of intact plants within 2 h. The rehydration was seemingly effected by an increasing conductivity of the one remaining root axis, since transpiration of the partially de-rooted plants did not fall below that of controls. With time, leaf elongation resumed, but at a slower rate than in intact plants. This slower growth may be attributed to a decrease in leaf extensibility since this was found to be reduced when measured by a counterweight technique involving linear displacement transducers. Loss of extensibility was associated with decreased IAA concentration in the leaf elongation zone.


Assuntos
Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Ácidos Indolacéticos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA