Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 168: 76-89, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28024187

RESUMO

Five new organotin(IV) complexes of compositions [Me2SnL1] (1), [Me2SnL2]n (2), [Me2SnL3] (3), [Ph3SnL1H]n (4) and [Ph3SnL3H] (5) (where L1=(2S)-2-((E)-((Z)-4-hydroxypent-3-en-2-ylidene)amino)-3-(1H-indol-3-yl)propanoate, L2=(2S)-(E)-2-((2-hydroxybenzylidene)amino)-3-(1H-indol-3-yl)propanoate and L3=(2S)-(E)-2-((1-(2-hydroxyphenyl)ethylidene)amino)-3-(1H-indol-3-yl)propanoate were synthesized and spectroscopically characterized. The crystal structures of 1-4 were determined. For the dimethyltin derivative 2, a polymeric chain structure was observed as a result of a long Sn∙∙∙O contact involving the exocyclic carbonyl oxygen-atom from the tridentate ligand of a neighboring Sn-complex unit. The tin atom in this complex has a distorted octahedral coordination geometry, in which the long Sn-O bond is almost trans to the tridentate ligand nitrogen-atom. In contrast, the dimethyltin(IV) complexes 1 and 3 displayed discrete monomeric structures where the tin atom has distorted trigonal-bipyramidal geometry with the two coordinating L oxygen atoms defining the axial positions. On the other hand, 4 is a chain polymer in the solid state. The ligand-bridged Sn atoms adopt a trans-Ph3SnO2 trigonal-bipyramidal configuration with equatorial phenyl groups. A carboxylato oxygen atom from one and the hydroxyl oxygen of the successive ligand in the chain occupy the axial positions. The solution structures were predicted by the use of 119Sn NMR chemical shifts. The photophysical properties of the complexes were investigated in the solid and in solution. The triphenyltin(IV) compound 4 was tested in detail ex vivo against A375 (human melanoma) cell line, exhibiting an IC50 value of 261nM to induce cell death as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay without significant alteration of cytolysis as determined by lactate dehydrogenase (LDH) assay. Compound 4-mediated potent cell death was also determined by Live and Dead assay and caspase-mediated cleavage of poly-ADP ribose polymerase (PARP). Potent cell death activity was not observed in primary cells, like blood-derived peripheral mononuclear cells (PBMC). Compound 4 inhibited the diphenyl hexatriene (DPH) binding to cells and decreased the micro viscosity in a dose-dependent manner. Additionally, the ability of 4 and cyclodextrin (CD) to interact was determined by molecular modelling.


Assuntos
Aminoácidos Aromáticos/química , Compostos Orgânicos de Estanho/química , Compostos Orgânicos de Estanho/farmacologia , Processos Fotoquímicos , Bases de Schiff/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular , Compostos Orgânicos de Estanho/síntese química , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , Estereoisomerismo
2.
Appl Biochem Biotechnol ; 178(3): 462-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26490379

RESUMO

The aim of this work is focused on the engineering of biocompatible complex systems composed of an inorganic and bio part. Graphene oxide (GO) and/or graphite oxide (GtO) were taken into account as potential substrates to the linkage of the protein such as Anemonia sulcata recombinant green fluorescent protein (rAsGFP). The complex system is obtained through a reduction process between GO/GtO and rAsGFP archiving an environmentally friendly biosynthesis. Spectroscopic measurements support the formation of reduced species. In particular, photoluminescence shows a change in the activity of the protein when a bond is formed, highlighted by a loss of the maximum emission signal of rAsGFP and a redshift of the maximum absorption peak of the GO/GtO species. Moreover, the hemolysis assay reveals a lower value in the presence of less oxidized graphene species providing evidence for a biocompatible material. This singular aspect can be approached as a promising method for circulating pharmaceutical preparations via intravenous administration in the field of drug delivery.


Assuntos
Materiais Biocompatíveis , Grafite/síntese química , Proteínas de Fluorescência Verde/química , Grafite/química , Óxidos/química
3.
Chemphyschem ; 14(1): 220-6, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23161861

RESUMO

Interactions between alkali-metal azides and metal-organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF-1 and IRMOF-3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali-metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali-metal cations with model aromatic centers and of the alkali-metal azides with distinct sites of differently sized models of IRMOF-1 and IRMOF-3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali-metal atom size, the latter decrease for cations interacting with the π-ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali-metal and two Zn atoms in an η(2) coordination mode are more favored.

4.
J Phys Chem A ; 116(23): 5595-603, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22620988

RESUMO

The atmospherically relevant reactions between dimethyl selenide (DMSe) and the molecular halogens (X(2) = Cl(2), Br(2), and I(2)) have been studied with ab initio calculations at the MP2/aug-cc-pVDZ level of theory. Geometry optimization calculations showed that the reactions proceed from the reagents to the products (CH(3)SeCH(2)X + HX) via three minima, a van der Waals adduct (DMSe:X(2)), a covalently bound intermediate (DMSeX(2)), and a product-like complex (CH(3)SeCH(2)X:HX). The computed potential energy surfaces are used to predict what molecular species are likely to be observed in spectroscopic experiments such as gas-phase photoelectron spectroscopy and infrared matrix isolation spectroscopy. It is concluded that, for the reactions of DMSe with Cl(2) and Br(2), the covalent intermediate should be seen in spectroscopic experiments, whereas, in the DMSe + I(2) reaction, the van der Waals adduct DMSe:I(2) should be observed. Comparison is made with previous related calculations and experiments on dimethyl sulfide (DMS) with molecular halogens. The relevance of the results to atmospheric chemistry is discussed. The DMSeX(2) and DMSe:X(2) intermediates are likely to be reservoirs of molecular halogens in the atmosphere which will lead on photolysis to ozone depletion.

5.
Phys Chem Chem Phys ; 14(7): 2399-407, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22241245

RESUMO

The reactions of dimethylsulfide (DMS) with molecular iodine (I(2)) and iodine monochloride (ICl) have been studied by infrared matrix isolation spectroscopy by co-condensation of the reagents in an inert gas matrix. Molecular adducts of DMS + I(2) and DMS + ICl have also been prepared using standard synthetic methods. The vapour above each of these adducts trapped in an inert gas matrix gave the same infrared spectrum as that recorded for the corresponding co-condensation reaction. In each case, the infrared spectrum has been interpreted in terms of a van der Waals adduct, DMS : I(2) and DMS : ICl, with the aid of infrared spectra computed for their minimum energy structures at the MP2 level. Computed relative energies of minima and transition states on the potential energy surfaces of these reactions were used to understand why they do not proceed further than the reactant complexes DMS : I(2) and DMS : ICl. The main findings of this research are compared with results obtained earlier for the DMS + Cl(2) and DMS + Br(2) reactions, and the atmospheric implications of the conclusions are also considered.

6.
J Chem Theory Comput ; 5(5): 1274-83, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-26609718

RESUMO

The isomerization of cis-but-2-ene to trans-but-2-ene within a 22T H-ZSM-5 zeolite model, also in the presence of two adsorbed Pd atoms, has been studied by DFT calculations. The results obtained allow us to state that the cis/trans but-2-ene isomerization can easily proceed inside unsupported zeolite cavities. In this case, differently than in the gas phase reaction, the trans-but-2-ene is less stable than the cis-but-2-ene, when adsorbed on the zeolite inner surface. Excluding the adsorption-desorption steps, the isomerization process involves two intermediates and three transition states, whose energy content is always very low with respect to that of reagents and intermediate species. The reaction is in principle allowed also in the presence of two Pd atoms embedded inside the zeolite cavity. However, strong H-Pd interactions seem to cause higher activation energies along the formation of the involved intermediates and transition states. To evaluate the confining effects of the zeolite room on the cis/trans isomerization process, the latter has been also analyzed on protonated (Pd2H(+)) and unprotonated (Pd2) bare palladium fragments at different multiplicity states. The but-2-ene adsorption on the considered systems and the mutual influence occurring between the metal atoms and the hydrogen acidic sites at different multiplicity states have also been taken into consideration.

7.
J Chem Theory Comput ; 4(3): 542-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26620794

RESUMO

The structures and the electronic properties of host-guest complexes formed by a cyclopeptidic tubular aggregate and the species CsN3, Cs2(N3)2, and Cs2N6 have been investigated by means of density functional theory. Taking advantage of the azide property to act as a bridge ligand between two or more metal cations, it may be possible to trapions inside a confined space. This could be important for the preparation of polynitrogen molecules Nn. Results show that there are significant attractive interactions between the azide ion and the cavity walls, which make the ion stay inside the inner empty space of the cyclopeptidic aggregate. The confinement of the species Cs2(N3)2 forces the azide moieties to get closer together. Further, the Cs2N6 molecule shows a remarkable interaction with the tubular host, which may indicate a stabilization of N6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA