RESUMO
EGFR-targeted therapies are efficacious, but toxicity is common and can be severe. Urokinase type plasminogen activator receptor (uPAR)-targeted drugs are only emerging, so neither their efficacy nor toxicity is fully established. Recombinant eBAT was created by combining cytokines EGF and uPA on the same single-chain molecule with truncated Pseudomonas toxin. Its purpose was to simultaneously target tumors and their vasculature in the tumor microenvironment. In prior studies on mice and dogs, the drug proved efficacious. Here, we report the safety of eBAT in normal wildtype, uPAR knockout, and immunoreplete and immunodeficient tumor-bearing mice, as well as in dogs with spontaneous sarcoma that more closely mirror human cancer onset. In immunocompetent mice, tumor-bearing mice, uPAR knockout mice, and mice receiving species-optimized eBAT, toxicities were mild and self-limiting. Likewise, in dogs with life-threatening sarcoma given dosages found to be biologically active, eBAT was well tolerated. In mice receiving higher doses, eBAT was associated with dose-dependent evidence of liver injury, including portal biliary hyperplasia, oval cell proliferation, lymphoplasmacytic inflammation, periportal hepatocellular microvesicular change, hemorrhage, necrosis, and apoptosis. The results support continuing the clinical development of eBAT as a therapeutic agent for individuals with sarcoma and other cancers.
Assuntos
Receptores ErbB , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Animais , Cães , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Feminino , Camundongos Knockout , Camundongos , Camundongos Endogâmicos C57BL , Sarcoma/tratamento farmacológico , Antineoplásicos/toxicidade , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator de Crescimento Epidérmico , Masculino , LigantesRESUMO
Ostechondritis dissecans (OCD) is an orthopaedic disease characterized by formation of osteochondral defects in developing joints. Epiphyseal cartilage necrosis (osteochondrosis [OC]) caused by focal failure of vascular supply is the known precursor lesion of OCD, but it remains to be established how the severity of vascular failure drives lesion healing or progression. In the current study we have implemented a novel piglet model of induced osteochondrosis of the lateral trochlear ridge of the femur to determine the role that the extent of ischemia plays in the development and progression of OC/OCD lesions. Ten 4-week-old Yorkshire piglets underwent surgical interruption of the vascular supply to the entirety (n = 4 pigs) or the distal half (n = 6 pigs) of the lateral trochlear ridge of the femur. At 2, 6, and 12 weeks postoperatively, distal femora were evaluated by magnetic resonance imaging (MRI) to determine the fate of induced OC lesions. At 12 weeks, piglets were euthanized, and the surgical sites were examined histologically. After complete devascularization, lesion size increased between the 6- and 12-week MRI by an average of 24.8 mm2 (95% CI: [-2.2, 51.7]; p = 0.071). During the same period, lesion size decreased by an average of 7.6 mm2 (95% CI: [-24.5, 19.4]; p = 0.83) in piglets receiving partial devascularization. At 12 weeks, average ± SD lesion size was larger (p<0.001) in piglets undergoing complete (73.5 ± 17.6 mm2) vs. partial (16.5 ± 9.8 mm2) devascularization. Our study demonstrates how the degree of vascular interruption determines lesion size and likelihood of healing in a large animal model of trochlear OC.
Assuntos
Modelos Animais de Doenças , Fêmur , Imageamento por Ressonância Magnética , Osteocondrose , Animais , Suínos , Fêmur/patologia , Fêmur/irrigação sanguínea , Osteocondrose/patologia , Osteocondrose/etiologia , Osteocondrose/cirurgia , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/etiologia , Osteocondrite Dissecante/patologia , Osteocondrite Dissecante/etiologia , Osteocondrite Dissecante/cirurgiaRESUMO
Legg-Calvé-Perthes disease (LCPD) is a childhood hip disorder characterized by ischemic injury to the epiphysis of the femoral head, but changes to the metaphysis have also been implicated in its pathogenesis. Quantitative magnetic resonance imaging (MRI) relaxation time mapping techniques are potentially useful to detect injury in LCPD, but studies to date have focused on the epiphysis. The purpose of this study was to assess whether T2, T1ρ, adiabatic T1ρ, and adiabatic T2ρ relaxation times can detect early metaphyseal changes in an LCPD piglet model. Complete epiphyseal ischemia of one femoral head was surgically induced and confirmed using contrast-enhanced MRI in n = 10 6-week-old piglets; the contralateral side was unoperated. The bilateral hips were imaged 1 week after surgery in vivo at 3T MRI using relaxation time mapping and contrast-enhanced MRI. Relaxation times and thicknesses of the metaphyseal primary and secondary spongiosa were measured and compared between the ischemic and contralateral-control femoral heads using paired t-tests. In the ischemic femoral heads, T2 relaxation times were significantly increased in the primary spongiosa (6.7 ± 9.8 ms, p = 0.029), and T2, T1ρ, adiabatic T1ρ, and adiabatic T2ρ relaxation times were significantly decreased in the secondary spongiosa (respectively: -13.3 ± 9.3 ms, p = 0.013; -32 ± 23 ms, p < 0.001; -43 ± 41 ms, p = 0.009; and -39 ± 13 ms, p < 0.001). The secondary spongiosa thickness was also significantly decreased in the ischemic femoral heads (p < 0.001). In conclusion, T2, T1ρ, adiabatic T1ρ, and adiabatic T2ρ relaxation time mapping techniques can detect early changes in the metaphysis following ischemic injury to the epiphysis of the femoral head in a piglet model of LCPD.
Assuntos
Modelos Animais de Doenças , Cabeça do Fêmur , Doença de Legg-Calve-Perthes , Imageamento por Ressonância Magnética , Animais , Doença de Legg-Calve-Perthes/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Suínos , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/irrigação sanguínea , Epífises/diagnóstico por imagemRESUMO
Failure of endochondral ossification due to interruption of the vascular supply to the epiphyseal cartilage is a critical step in the development of osteochondritis dissecans (OCD). Herein we describe the vascular architecture of the distal humeral epiphyseal cartilage in pigs and identify characteristic features that have been associated with sites predisposed to OCD development across species. Distal humeral specimens were harvested from pigs (n = 5, ages = 1, 10, 18, 30, and, 42 days old) and imaged at 9.4T magnetic resonance imaging (MRI) using a 3D gradient recalled echo sequence. The MRI data were processed using a quantitative susceptibility mapping (QSM) pipeline to visualize the vascular architecture. Specimens were also evaluated histologically to identify the presence of ischemic epiphyseal cartilage necrosis (osteochondrosis [OC]-latens) and associated failure of endochondral ossification (OC-manifesta). The QSM data enabled visualization of two distinct vascular beds arising from the perichondrium at the lateral and medial aspects of the distal humeral epiphysis. Elongated vessels originating from these beds coursed axially to supply the lateral and medial thirds of epiphyseal cartilage. At 18 days of age and older, a shift from perichondrial to transosseous blood supply was noted axially, which appeared more pronounced on the lateral side. This shift coincided with histologic identification of OC-latens (30- and 42-day-old specimens) and OC-manifesta (18- and 42-day-old specimens) lesions in the corresponding regions. The vascular anatomy and its evolution at the distal humeral epiphysis closely resembles that previously reported at predilection sites of knee OCD, suggesting a shared pathophysiology between the knee and elbow joints.
Assuntos
Osteocondrite Dissecante , Osteocondrose , Osteonecrose , Animais , Suínos , Osteocondrite Dissecante/diagnóstico por imagem , Osteocondrite Dissecante/etiologia , Lâmina de Crescimento/patologia , Osteocondrose/patologia , Cartilagem/patologia , Osteonecrose/patologiaRESUMO
Pathways leading to osteoarthritis (OA) are diverse depending on the risk factors involved; thus, developing OA therapeutics has been challenging. Here we report that nuclear protein-1 (Nupr1), a stress-inducible protein/transcription factor, is activated by pathways associated with obesity and aging in chondrocytes. Treatment of human chondrocytes with free fatty acids (palmitate and oleate; a model for high-fat diet/obesity) induced PERK signaling and increased expression of caspase-3, TRB3, and Nupr1. On the other hand, treatment of chondrocytes with menadione (oxidative stress inducer) induced oxidation of IRE1, activated antioxidant response (higher Nrf2 expression), and increased expression of Nupr1 and matrix metalloproteinases. Experimental OA was induced by destabilization of the medial meniscus (DMM) in the knee joints of Nupr1+/+ and Nupr1-/- mice. Loss of Nupr1 expression reduced the severity of cartilage lesions in this model. Together, our findings suggest that Nupr1 is a common factor activated by signaling pathways activated by obesity (ER stress) and age (oxidative stress) and a potential drug target for OA resulting from various risk factors.
Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , Envelhecimento , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteínas Nucleares/metabolismo , Obesidade/metabolismo , Osteoartrite/metabolismoRESUMO
Juvenile osteochondritis dissecans (JOCD) is a pediatric orthopedic disorder that involves the articular-epiphyseal cartilage complex and underlying bone. Clinical disease is often characterized by the presence of radiographically apparent osteochondral flaps and fragments. The existence of early JOCD lesions (osteochondrosis latens [OCL] and osteochondrosis manifesta [OCM]) that precede the development of osteochondral flaps and fragments is also well recognized. However, identification of naturally occurring OCL lesions (confined to cartilage) using noninvasive imaging techniques has not yet been accomplished. We hypothesized that 10.5 T magnetic resonance imaging (MRI) can identify naturally occurring OCL lesions at predilection sites in intact joints of juvenile pigs. Unilateral elbows and knees (stifles) were harvested from three pigs aged 4, 8, and 12 weeks, and scanned in a 10.5 T MRI to obtain morphological 3D DESS images, and quantitative T2 and T1ρ relaxation time maps. Areas with increased T2 and T1ρ relaxation times in the articular-epiphyseal cartilage complex were identified in 1/3 distal femora and 3/3 distal humeri and were considered suspicious for OCL or OCM lesions. Histological assessment confirmed the presence of OCL or OCM lesions at each of these sites and failed to identify additional lesions. Histological findings included necrotic vascular profiles associated with areas of chondronecrosis either confined to the epiphyseal cartilage (OCL, 4- and 8-week-old specimens) or resulting in a delay in endochondral ossification (OCM, 12-week-old specimen). Future studies with clinical MR systems (≤7 T) are needed to determine whether these MRI methods are suitable for the in vivo diagnosis of early JOCD lesions in humans.
Assuntos
Osteocondrite Dissecante , Osteocondrose , Humanos , Criança , Suínos , Animais , Osteocondrose/patologia , Necrose , Imageamento por Ressonância Magnética , Imageamento TridimensionalRESUMO
In collaboration with the American College of Veterinary Pathologists.
Assuntos
Patologia Veterinária , Médicos Veterinários , Animais , Humanos , Estados UnidosRESUMO
OBJECTIVE: The study objective was to determine whether overexpression of the mitochondrial antioxidant peroxidase, peroxiredoxin 3 (Prx3), reduces the severity of osteoarthritis (OA) in mice. METHODS: Age-related OA (age 18 and 24 months) and OA induced by destabilization of the medial meniscus (DMM at age 6 months) were assessed in male mice that overexpress a human Prdx3 transgene encoding the Prx3 protein. Lox-stop-lox-Prdx3 (iPrdx3) mice were crossed with aggrecan-CreERT2 mice to produce iPrdx3AgCreERT2 or with Col2Cre to produce iPrdx3Col2Cre mice. Germline transgenics (Prdx3Tg) were also evaluated. Prx3 protein level was assessed by immunoblotting and functionally after induction of elevated mitochondrial hydrogen peroxide (H2 O2 ) using menadione. Histological sections of stifle joints were scored for cartilage damage (Articular Cartilage Structure score [ACS]), osteophytes, and synovial hyperplasia and were evaluated by histomorphometry. RESULTS: Overexpression of Prx3 maintained mitochondrial membrane integrity and inhibited p38 phosphorylation in the presence of elevated H2 O2 . ACS scores of 18-month-old iPrdx3AgCreERT2 mice (mean ± SD, 4.88 ± 5.05) were significantly lower than age-matched iPrdx3 controls (11.75 ± 6.34, P = 0.002) and trended lower in the 18-month Prdx3Tg group (P = 0.14), whereas no significant differences between experimental and control groups at 24 months of age or in OA induced by DMM surgery were noted. Osteophyte scores trended lower in the 18-month-old Prdx3Tg group (P = 0.09) and at 24 months in the iPrdx3Col2Cre mice (P = 0.05). There were no significant group differences in synovial hyperplasia or histomorphometric measures. CONCLUSION: Overexpression of the mitochondrial peroxidase Prx3 reduced the severity of age-related OA, but not at advanced ages and not in DMM-induced OA in younger mice.
RESUMO
We studied systemic ceftriaxone, and free/local tobramycin and doxycycline in a controlled rat model representing a generic acute exogenous joint infection. We hypothesized that evidence of infection (quantitative colony forming units [CFU], qualitative scanning electron microscopy [SEM], histopathology) (1a) would be reduced with local versus systemic antibiotic, (1b) any antibiotic would be superior to control, (2) there would be a difference among antibiotics, and (3) antibiotic would not be detectable in serum at 4-week euthanasia. Study groups included infected and noninfected (1) control (no treatment), (2) systemic ceftriaxone (daily), (3) local tobramycin, and (4) local doxycycline (10 rats/group; power = 0.8). With IACUC approval, a reliable acute exogenous joint infection was created by slowly injecting 50-µl, 104 CFU Staphylococcus aureus, into the distal femoral medullary canal. The antibiotic formulation was introduced locally to the femoral canal and joint space. After 4 weeks, serum, pin, bone, and synovium were obtained. CFU/ml of bone and synovium were quantified using macrotiter method. SEM imaged biofilm on the surface of the pin, histopathology identified tissue response, liquid chromatography/mass spectrometry quantified plasma antibiotic. (1) Groups receiving any antibiotic reported lower CFU/ml in synovium compared with no treatment. (2) In the synovium, free/local tobramycin reduced CFU/ml to a greater extent than free/local doxycycline (p < 0.05). (3) Antibiotic in plasma after the local application was nondetectable in all groups after 4 weeks. SEM revealed no difference in biofilm on pin among all groups.
Assuntos
Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Animais , Antibacterianos , Ceftriaxona , Doxiciclina , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/prevenção & controle , Ratos , Ratos Sprague-Dawley , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , TobramicinaRESUMO
This study investigated the sensitivity of T1ρ and T2 relaxation time mapping to detect acute ischemic injury to the secondary ossification center (SOC) and epiphyseal cartilage of the femoral head in a piglet model of Legg-Calvé-Perthes disease. Six piglets underwent surgery to induce global right femoral head ischemia and were euthanized 48 h later. Fresh operated and contralateral-control femoral heads were imaged ex vivo with T1, T2, and T1ρ mapping using a 9.4T magnetic resonance imaging scanner. The specimens were imaged a second time after a freeze/thaw cycle and then processed for histology. T1, T2, and T1ρ measurements in the SOC, epiphyseal cartilage, articular cartilage, and metaphysis were compared between operated and control femoral heads using paired t tests. The effects of freeze/thaw, T1ρ spin-lock frequency, and fat saturation were also investigated. Five piglets with histologically confirmed ischemic injury were quantitatively analyzed. T1ρ was increased in the SOC (101 ± 15 vs. 73 ± 16 ms; p = 0.0026) and epiphyseal cartilage (84.9 ± 9.2 vs. 74.3 ± 3.6 ms; p = 0.031) of the operated versus control femoral heads. T2 was also increased in the SOC (28.7 ± 2.0 vs. 22.7 ± 1.7; p = 0.0037) and epiphyseal cartilage (57.4 ± 4.7 vs. 49.0 ± 2.7; p = 0.0041). No changes in T1 were detected. The sensitivities of T1ρ and T2 mapping in detecting ischemic injury were maintained after a freeze/thaw cycle, and T1ρ sensitivity was maintained after varying spin-lock frequency and applying fat saturation. In conclusion, T1ρ and T2 mapping are sensitive in detecting ischemic injury to the SOC and epiphyseal cartilage of the femoral head as early as 48 h after ischemia induction.
Assuntos
Cartilagem Articular , Doença de Legg-Calve-Perthes , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Lâmina de Crescimento/patologia , Isquemia/diagnóstico por imagem , Isquemia/etiologia , Doença de Legg-Calve-Perthes/diagnóstico por imagem , Doença de Legg-Calve-Perthes/patologia , Imageamento por Ressonância Magnética/métodos , SuínosRESUMO
Objective: While a role for vitamin K in maintaining joint tissue homeostasis has been proposed based on the presence of vitamin K dependent proteins in cartilage and bone, it is not clear if low vitamin K intake is causally linked to joint tissue degeneration. To address this gap, we manipulated vitamin K status in aging mice to test its effect on age-related changes in articular cartilage and sub-chondral bone. Methods: Eleven-month old male C57BL6 mice were randomly assigned to a low vitamin K diet containing 120 mcg phylloquinone/kg diet (n = 32) or a control diet containing 1.5 mg phylloquinone/kg diet (n = 30) for 6 months. Knees were evaluated histologically using Safranin O and H&E staining, as well as using micro-CT. Results: Eleven mice in the low vitamin K diet group and three mice in the control group died within the first 100 days of the experiment (p = 0.024). Mice fed the low vitamin K diet had higher Safranin-O scores, indicative of more proteoglycan loss, compared to mice fed the control diet (p ≤ 0.026). The articular cartilage structure scores did not differ between the two groups (p ≥ 0.190). The sub-chondral bone parameters measured using micro CT also did not differ between the two groups (all p ≥ 0.174). Conclusion: Our findings suggest low vitamin K status can promote joint tissue proteoglycan loss in older male mice. Future studies are needed to confirm our findings and obtain a better understanding of the molecular mechanisms underlying the role of vitamin K in joint tissue homeostasis.
RESUMO
Clostridium difficile is a well-documented cause of enterocolitis in several species, including humans, with limited documentation in New World nonhuman primates. We report several cases of C. difficile-associated pseudomembranous enterocolitis, including a case in a Geoffroy's spider monkey (Ateles geoffroyi) and several cases in common marmosets (Callithrix jacchus). The histologic lesions included a spectrum of severity, with most cases characterized by the classic "volcano" lesions described in humans and several other animal species. C. difficile was isolated from the colon of the spider monkey, while the presence of toxin A or toxin B or of the genes of toxin A or B by polymerase chain reaction served as corroborative evidence in several affected marmosets. C. difficile should be considered a cause of enterocolitis in these species.