Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 484: 176-84, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24705300

RESUMO

The surface of nanoparticles (NP) is often functionalized with a capping agent to increase their colloidal stability. Having a strong effect on the characteristics of NP, the coating might already determine the risk from NP to organisms and the environment. In this study identical iron oxide nanoparticles (IONP; Ø 5-6nm) were functionalized with four different coatings: ascorbate (ASC-IONP), citrate (CIT-IONP), dextran (DEX-IONP), and polyvinylpyrrolidone (PVP-IONP). Ascorbate and citrate stabilize NP via electrostatic repulsion whereas dextran and polyvinylpyrrolidone are steric stabilizers. All IONP were colloidally stable over several weeks. Their acute effects on neonates of the waterflea Daphnia magna were investigated over 96h. The highest immobilizing effect was found for ASC- and DEX-IONP. In the presence of neonates, both agglomerated or flocculated and adsorbed to the carapace and filtering apparatuses, inducing high immobilization. Lower immobilization was found for CIT-IONP. Their effect was hypothesized to partly originate from an increased release of dissolved iron and the ability to form reactive oxygen species (ROS). Furthermore, incomplete ecdysis occurred at high concentrations of ASC-, DEX-, and CIT-IONP. PVP-IONP did not induce any negative effect, although high quantities were visibly ingested by the daphnids. PVP-IONP had the highest colloidal stability without any occurring agglomeration, adsorption, or dissolution. Only strong swelling of the PVP coating was observed in medium, highly increasing the hydrodynamic diameter. Each coating caused individual effects. Toxicity cannot be correlated to hydrodynamic diameter or the kind of stabilizing forces. Effects are rather linked to decreasing colloidal stability, the release of ions from the core material or the ability to form ROS, respectively.


Assuntos
Ferro/toxicidade , Nanopartículas Metálicas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ácido Ascórbico/química , Ácido Cítrico/química , Daphnia , Dextranos/química , Ferro/química , Nanopartículas Metálicas/química , Povidona/química , Medição de Risco , Propriedades de Superfície , Poluentes Químicos da Água/química
2.
J Colloid Interface Sci ; 417: 188-98, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24407676

RESUMO

The decomposition of iron(III) acetylacetonate in high-boiling polyols such as diethylene glycole is an efficient way to produce water-soluble iron oxide nanoparticles (IONPs) with small sizes. We present an extension of this method by introducing ethylene diamine (EDA) or diethylene triamine (DTA) as a structure-directing agent and adding polyvinylpyrrolidone (PVP) as a stabilizing agent. The synthesis was studied with respect to effects of the chain length of the polyol used as solvent, the chain length of the structure-directing agent, the presence of PVP, the heating rate, and the nature of the precursor. By varying these parameters, we were able to show, that probably an interplay of the structure-directing agent and the polyol plays an important role for the stabilization and growth of the different facets of the IONP crystal. The chain length of the polyol used as solvent alters the influence of EDA or DTA as stabilizer of {111} facets, leading to IONPs with spherical, tetrahedral, or nanoplate morphology and mean diameters ranging from 4 nm up to 25 nm. PVP in the reaction medium narrows down particle size and shape distributions and promotes the formation of very stable, water-based colloidal solutions. The saturation magnetization of the particles was determined by a superconducting quantum interference device (SQUID) and their ability to act as a T2-contrast agent was tested by magnetic resonance imaging (MRI).


Assuntos
Etilenodiaminas/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/instrumentação , Nanopartículas/química , Polímeros/química , Etilenoglicóis/química , Temperatura Alta , Hidroxibutiratos/química , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula , Pentanonas/química , Imagens de Fantasmas , Povidona/química , Soluções , Água/química
3.
Nanoscale ; 5(3): 1034-46, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23255050

RESUMO

Iron oxide nanoparticles (IONP) are currently being studied as green magnet resonance imaging (MRI) contrast agents. They are also used in huge quantities for environmental remediation and water treatment purposes, although very little is known on the consequences of such applications for organisms and ecosystems. In order to address these questions, we synthesised polyvinylpyrrolidone-coated IONP, characterised the particle dispersion in various media and investigated the consequences of an IONP exposure using an array of biochemical and biological assays. Several theoretical approaches complemented the measurements. In aqueous dispersion IONP had an average hydrodynamic diameter of 25 nm and were stable over six days in most test media, which could also be predicted by stability modelling. The particles were tested in concentrations of up to 100 mg Fe per L. The activity of the enzymes glutathione reductase and acetylcholine esterase was not affected, nor were proliferation, morphology or vitality of mammalian OLN-93 cells although exposure of the cells to 100 mg Fe per L increased the cellular iron content substantially. Only at this concentration, acute toxicity tests with the freshwater flea Daphnia magna revealed slightly, yet insignificantly increased mortality. Two fundamentally different bacterial assays, anaerobic activated sludge bacteria inhibition and a modified sediment contact test with Arthrobacter globiformis, both rendered results contrary to the other assays: at the lowest test concentration (1 mg Fe per L), IONP caused a pronounced inhibition whereas higher concentrations were not effective or even stimulating. Preliminary and prospective risk assessment was exemplified by comparing the application of IONP with gadolinium-based nanoparticles as MRI contrast agents. Predicted environmental concentrations were modelled in two different scenarios, showing that IONP could reduce the environmental exposure of toxic Gd-based particles by more than 50%. Application of the Swiss "Precautionary Matrix for Synthetic Nanomaterials" rendered a low precautionary need for using our IONP as MRI agents and a higher one when using them for remediation or water treatment. Since IONP and (considerably more reactive) zerovalent iron nanoparticles are being used in huge quantities for environmental remediation purposes, it has to be ascertained that these particles pose no risk to either human health or to the environment.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Química Verde/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Modelos Químicos , Água/química , Animais , Simulação por Computador , Humanos , Teste de Materiais , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA