Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Biochimie ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038730

RESUMO

N-terminal acetylation is being recognized as a factor affecting protein lifetime and proteostasis. It is a modification where an acetyl group is added to the N-terminus of proteins, and this occurs in 80 % of the human proteome. N-terminal acetylation is catalyzed by enzymes called N-terminal acetyltransferases (NATs). The various NATs acetylate different N-terminal amino acids, and methionine is a known target for some of the NATs. Currently, the acetylation status of most proteins can only be assessed with a limited number of methods, including mass spectrometry, which although powerful and robust, remains laborious and can only survey a fraction of the proteome. We here present testing of an antibody that was developed to specifically recognize Nt-acetylated methionine-starting proteins. We have used dot blots with synthetic acetylated and non-acetylated peptides in addition to protein analysis of lysates from NAT knockout cell lines to assess the specificity and application of this anti-Nt-acetylated methionine antibody (anti-NtAc-Met). Our results demonstrate that this antibody is indeed NtAc-specific and further show that it has selectivity for some subtypes of methionine-starting N-termini, specifically potential substrates of the NatC, NatE and NatF enzymes. We propose that this antibody may be a powerful tool to identify NAT substrates or to analyse changes in N-terminal acetylation for specific cellular proteins of interest.

2.
Nat Commun ; 15(1): 5360, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918375

RESUMO

Oxygen homeostasis is maintained in plants and animals by O2-sensing enzymes initiating adaptive responses to low O2 (hypoxia). Recently, the O2-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified. This could be because alternative modifications of N-terminal cysteine residues, including acetylation, prevent ADO-catalysed oxidation. Here we investigate the relationship between ADO-catalysed oxidation and NatA-catalysed acetylation of a broad range of protein sequences with N-terminal cysteines. We present evidence that human NatA catalyses N-terminal cysteine acetylation in vitro and in vivo. We then show that sequences downstream of the N-terminal cysteine dictate whether this residue is oxidised or acetylated, with ADO preferring basic and aromatic amino acids and NatA preferring acidic or polar residues. In vitro, the two modifications appear to be mutually exclusive, suggesting that distinct pools of N-terminal cysteine proteins may be acetylated or oxidised. These results reveal the sequence determinants that contribute to N-terminal cysteine protein modifications, with implications for O2-dependent protein stability and the hypoxic response.


Assuntos
Cisteína , Oxirredução , Estabilidade Proteica , Cisteína/metabolismo , Cisteína/química , Acetilação , Humanos , Oxigênio/metabolismo , Oxigênio/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Células HEK293
3.
JCI Insight ; 9(11)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855865

RESUMO

Monogenic diabetes is a gateway to precision medicine through molecular mechanistic insight. Hepatocyte nuclear factor 1A (HNF-1A) and HNF-4A are transcription factors that engage in crossregulatory gene transcription networks to maintain glucose-stimulated insulin secretion in pancreatic ß cells. Variants in the HNF1A and HNF4A genes are associated with maturity-onset diabetes of the young (MODY). Here, we explored 4 variants in the P2-HNF4A promoter region: 3 in the HNF-1A binding site and 1 close to the site, which were identified in 63 individuals from 21 families of different MODY disease registries across Europe. Our goal was to study the disease causality for these variants and to investigate diabetes mechanisms on the molecular level. We solved a crystal structure of HNF-1A bound to the P2-HNF4A promoter and established a set of techniques to probe HNF-1A binding and transcriptional activity toward different promoter variants. We used isothermal titration calorimetry, biolayer interferometry, x-ray crystallography, and transactivation assays, which revealed changes in HNF-1A binding or transcriptional activities for all 4 P2-HNF4A variants. Our results suggest distinct disease mechanisms of the promoter variants, which can be correlated with clinical phenotype, such as age of diagnosis of diabetes, and be important tools for clinical utility in precision medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Fator 1-alfa Nuclear de Hepatócito , Fator 4 Nuclear de Hepatócito , Regiões Promotoras Genéticas , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Regiões Promotoras Genéticas/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Sítios de Ligação , Cristalografia por Raios X , Masculino , Feminino , Ligação Proteica
4.
PLoS One ; 19(5): e0301328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713657

RESUMO

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/y male mice on the inbred genetic background in this different animal facility.


Assuntos
Camundongos Knockout , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , Animais , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Camundongos , Feminino , Masculino , Fenótipo , Patrimônio Genético , Herança Materna/genética , Camundongos Endogâmicos C57BL
6.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163119

RESUMO

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/Y male mice on the inbred genetic background in this different animal facility.

7.
Front Mol Biosci ; 10: 1249939, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908230

RESUMO

Hepatocyte nuclear factor 1α (HNF-1A) is a transcription factor with important gene regulatory roles in pancreatic ß-cells. HNF1A gene variants are associated with a monogenic form of diabetes (HNF1A-MODY) or an increased risk for type 2 diabetes. While several pancreatic target genes of HNF-1A have been described, a lack of knowledge regarding the structure-function relationships in HNF-1A prohibits a detailed understanding of HNF-1A-mediated gene transcription, which is important for precision medicine and improved patient care. Therefore, we aimed to characterize the understudied transactivation domain (TAD) of HNF-1A in vitro. We present a bioinformatic approach to dissect the TAD sequence, analyzing protein structure, sequence composition, sequence conservation, and the existence of protein interaction motifs. Moreover, we developed the first protocol for the recombinant expression and purification of the HNF-1A TAD. Small-angle X-ray scattering and synchrotron radiation circular dichroism suggested a disordered conformation for the TAD. Furthermore, we present functional data on HNF-1A undergoing liquid-liquid phase separation, which is in line with in silico predictions and may be of biological relevance for gene transcriptional processes in pancreatic ß-cells.

8.
Nat Commun ; 14(1): 6774, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891180

RESUMO

Most eukaryotic proteins are N-terminally acetylated, but the functional impact on a global scale has remained obscure. Using genome-wide CRISPR knockout screens in human cells, we reveal a strong genetic dependency between a major N-terminal acetyltransferase and specific ubiquitin ligases. Biochemical analyses uncover that both the ubiquitin ligase complex UBR4-KCMF1 and the acetyltransferase NatC recognize proteins bearing an unacetylated N-terminal methionine followed by a hydrophobic residue. NatC KO-induced protein degradation and phenotypes are reversed by UBR knockdown, demonstrating the central cellular role of this interplay. We reveal that loss of Drosophila NatC is associated with male sterility, reduced longevity, and age-dependent loss of motility due to developmental muscle defects. Remarkably, muscle-specific overexpression of UbcE2M, one of the proteins targeted for NatC KO-mediated degradation, suppresses defects of NatC deletion. In conclusion, NatC-mediated N-terminal acetylation acts as a protective mechanism against protein degradation, which is relevant for increased longevity and motility.


Assuntos
Longevidade , Processamento de Proteína Pós-Traducional , Masculino , Humanos , Sequência de Aminoácidos , Acetilação , Longevidade/genética , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Methods Enzymol ; 686: 29-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532404

RESUMO

The vast majority of eukaryotic proteins are subjected to N-terminal (Nt) acetylation. This reaction is catalyzed by a group of N-terminal acetyltransferases (NATs), which co- or post-translationally transfer an acetyl group from Acetyl coenzyme A to the protein N-terminus. Nt-acetylation plays an important role in many cellular processes, but the functional consequences of this widespread protein modification are still undefined for most proteins. Several in vitro acetylation assays have been developed to study the catalytic activity and substrate specificity of NATs or other acetyltransferases. These assays are valuable tools that can be used to define substrate specificities of yet uncharacterized NAT candidates, assess catalytic impairment of pathogenic NAT variants, and determine the potency of chemical inhibitors. The enzyme input in acetylation assays is typically acetyltransferases that have been recombinantly expressed and purified or immunoprecipitated proteins. In this chapter, we highlight how cell lysates can also be used to assess NAT catalytic activity and impairment when used as input in a previously described isotope-based in vitro Nt-acetylation assay. This is a fast and highly sensitive method that utilizes isotope labeled 14C-Ac-CoA and scintillation to detect the formation of Nt-acetylated peptide products.


Assuntos
Acetiltransferases , Acetiltransferases N-Terminal , Acetiltransferases N-Terminal/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeos/metabolismo , Acetilação
11.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37462250

RESUMO

Most proteins receive an acetyl group at the N terminus while in their nascency as the result of modification by co-translationally acting N-terminal acetyltransferases (NATs). The N-terminal acetyl group can influence several aspects of protein functionality. From studies of NAT-lacking cells, it is evident that several cellular processes are affected by this modification. More recently, an increasing number of genetic cases have demonstrated that N-terminal acetylation has crucial roles in human physiology and pathology. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the human NAT enzymes and their properties, substrate coverage, cellular roles and connections to human disease.


Assuntos
Acetiltransferases , Acetiltransferases N-Terminal , Humanos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acetiltransferases N-Terminal/química , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
12.
Nat Commun ; 14(1): 4517, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500638

RESUMO

Protein N-terminal (Nt) acetylation is one of the most abundant modifications in eukaryotes, covering ~50-80 % of the proteome, depending on species. Cells with defective Nt-acetylation display a wide array of phenotypes such as impaired growth, mating defects and increased stress sensitivity. However, the pleiotropic nature of these effects has hampered our understanding of the functional impact of protein Nt-acetylation. The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. Here we employ a multi-dimensional proteomics approach to analyze Saccharomyces cerevisiae lacking NatA activity, which causes global proteome remodeling. Pulsed-SILAC experiments reveals that NatA-deficient strains consistently increase degradation of ribosomal proteins compared to wild type. Explaining this phenomenon, thermal proteome profiling uncovers decreased thermostability of ribosomes in NatA-knockouts. Our data are in agreement with a role for Nt-acetylation in promoting stability for parts of the proteome by enhancing the avidity of protein-protein interactions and folding.


Assuntos
Acetiltransferases N-Terminal , Proteínas de Saccharomyces cerevisiae , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acetiltransferase N-Terminal E/metabolismo
13.
Front Chem ; 11: 1202501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408560

RESUMO

Acetylation of protein N-termini is one of the most common protein modifications in the eukaryotic cell and is catalyzed by the N-terminal acetyltransferase family of enzymes. The N-terminal acetyltransferase NAA80 is expressed in the animal kingdom and was recently found to specifically N-terminally acetylate actin, which is the main component of the microfilament system. This unique animal cell actin processing is essential for the maintenance of cell integrity and motility. Actin is the only known substrate of NAA80, thus potent inhibitors of NAA80 could prove as important tool compounds to study the crucial roles of actin and how NAA80 regulates this by N-terminal acetylation. Herein we describe a systematic study toward optimizing the peptide part of a bisubstrate-based NAA80 inhibitor comprising of coenzyme A conjugated onto the N-terminus of a tetrapeptide amide via an acetyl linker. By testing various combinations of Asp and Glu which are found at the N-termini of ß- and γ-actin, respectively, CoA-Ac-EDDI-NH2 was identified as the best inhibitor with an IC50 value of 120 nM.

14.
Am J Med Genet A ; 191(9): 2402-2410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37387332

RESUMO

Most human proteins are N-terminally acetylated by N-terminal acetyltransferases (NATs), which play crucial roles in many cellular functions. The NatC complex, comprising the catalytic subunit NAA30 and the auxiliary subunits NAA35 and NAA38, is estimated to acetylate up to 20% of the human proteome in a co-translational manner. Several NAT enzymes have been linked to rare genetic diseases, causing developmental delay, intellectual disability, and heart disease. Here, we report a de novo heterozygous NAA30 nonsense variant c.244C>T (p.Q82*) (NM_001011713.2), which was identified by whole exome sequencing in a 5-year-old boy presenting with global development delay, autism spectrum disorder, hypotonia, tracheal cleft, and recurrent respiratory infections. Biochemical studies were performed to assess the functional impact of the premature stop codon on NAA30's catalytic activity. We find that NAA30-Q82* completely disrupts the N-terminal acetyltransferase activity toward a classical NatC substrate using an in vitro acetylation assay. This finding corresponds with structural modeling showing that the truncated NAA30 variant lacks the entire GNAT domain, which is required for catalytic activity. This study suggests that defective NatC-mediated N-terminal acetylation can cause disease, thus expanding the spectrum of NAT variants linked to genetic disease.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Masculino , Humanos , Pré-Escolar , Acetiltransferases N-Terminal/metabolismo , Sequência de Aminoácidos , Proteômica , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Acetiltransferase N-Terminal C/genética , Acetiltransferase N-Terminal C/metabolismo
15.
Clin Genet ; 104(3): 371-376, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37191084

RESUMO

NAA20 is the catalytic subunit of the NatB complex, which is responsible for N-terminal acetylation of approximately 20% of the human proteome. Recently, pathogenic biallelic variants in NAA20 were associated with a novel neurodevelopmental disorder in five individuals with limited clinical information. We report two sisters harboring compound heterozygous variant (c.100C>T (p.Gln34Ter) and c.11T>C p.(Leu4Pro)) in the NAA20 gene, identified by exome sequencing. In vitro studies showed that the missense variant p.Leu4Pro resulted in a reduction of NAA20 catalytic activity due to weak coupling with the NatB auxiliary subunit. In addition, unpublished data of the previous families were reported, outlining the core phenotype of the NAA20-related disorder mostly characterized by cognitive impairment, microcephaly, ataxia, brain malformations, dysmorphism and variable occurrence of cardiac defect and epilepsy. Remarkably, our two patients featured epilepsy onset in adolescence suggesting this may be a part of syndrome evolution. Functional studies are needed to better understand the complexity of NAA20 variants pathogenesis as well as of other genes linked to N-terminal acetylation.


Assuntos
Microcefalia , Malformações do Sistema Nervoso , Adolescente , Humanos , Domínio Catalítico , Microcefalia/genética , Síndrome , Fenótipo , Acetiltransferase N-Terminal B/genética , Acetiltransferase N-Terminal B/metabolismo
17.
Trends Biochem Sci ; 48(6): 495-499, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997368

RESUMO

Although locating at the protein ends, N- and C-termini are at the center of numerous cellular functions. This topic engages an increasing number of scientists, recently forming the International Society of Protein Termini (ISPT). Protein Termini 2022 gathered this interdisciplinary community to discuss how protein ends may steer protein functionality.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma
18.
Trends Biochem Sci ; 48(5): 414-416, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804256

RESUMO

Actin, one of the most abundant proteins in nature and a key component of the cytoskeleton, undergoes a unique multistep N-terminal (Nt) maturation. In a recent report, Haahr et al. identified actin maturation protease (ACTMAP) as the dedicated actin aminopeptidase and showed that its absence is associated with abnormal muscle physiology.


Assuntos
Actinas , Citoesqueleto , Actinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo
19.
J Biol Chem ; 299(2): 102824, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36567016

RESUMO

N-terminal acetylation is a conserved protein modification among eukaryotes. The yeast Saccharomyces cerevisiae is a valuable model system for studying this modification. The bulk of protein N-terminal acetylation in S. cerevisiae is catalyzed by the N-terminal acetyltransferases NatA, NatB, and NatC. Thus far, proteome-wide identification of the in vivo protein substrates of yeast NatA and NatB has been performed by N-terminomics. Here, we used S. cerevisiae deleted for the NatC catalytic subunit Naa30 and identified 57 yeast NatC substrates by N-terminal combined fractional diagonal chromatography analysis. Interestingly, in addition to the canonical N-termini starting with ML, MI, MF, and MW, yeast NatC substrates also included MY, MK, MM, MA, MV, and MS. However, for some of these substrate types, such as MY, MK, MV, and MS, we also uncovered (residual) non-NatC NAT activity, most likely due to the previously established redundancy between yeast NatC and NatE/Naa50. Thus, we have revealed a complex interplay between different NATs in targeting methionine-starting N-termini in yeast. Furthermore, our results showed that ectopic expression of human NAA30 rescued known NatC phenotypes in naa30Δ yeast, as well as partially restored the yeast NatC Nt-acetylome. Thus, we demonstrate an evolutionary conservation of NatC from yeast to human thereby underpinning future disease models to study pathogenic NAA30 variants. Overall, this work offers increased biochemical and functional insights into NatC-mediated N-terminal acetylation and provides a basis for future work to pinpoint the specific molecular mechanisms that link the lack of NatC-mediated N-terminal acetylation to phenotypes of NatC deletion yeast.


Assuntos
Acetiltransferases N-Terminal , Saccharomyces cerevisiae , Humanos , Acetilação , Cromatografia Líquida , Sequência Conservada , Teste de Complementação Genética , Metionina/metabolismo , Acetiltransferase N-Terminal C/genética , Acetiltransferase N-Terminal C/metabolismo , Acetiltransferase N-Terminal E , Acetiltransferases N-Terminal/deficiência , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
20.
J Biol Chem ; 298(4): 101803, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257744

RESUMO

Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating the expression of numerous target genes. Pathogenic variants in the HNF1A gene are known to cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), a disease characterized by dominant inheritance, age of onset before 25 to 35 years of age, and pancreatic ß-cell dysfunction. A precise diagnosis can alter management of this disease, as insulin can be exchanged with sulfonylurea tablets and genetic counseling differs from polygenic forms of diabetes. Therefore, more knowledge on the mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants is required for precise diagnostics. Here, we structurally and biophysically characterized an HNF-1A protein containing both the DNA-binding domain and the dimerization domain, and determined the folding and DNA-binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S). All three variants showed reduced functionality compared to the WT protein. Furthermore, while the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, we found the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for these investigated variants and present a novel approach for the dissection of structurally unstable and DNA-binding defective variants. This study indicates that structural and biochemical investigation of HNF-1A is a valuable tool in reliable variant classification needed for precision diabetes diagnostics and management.


Assuntos
Diabetes Mellitus Tipo 2 , Fator 1-alfa Nuclear de Hepatócito , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Variação Genética , Fator 1-alfa Nuclear de Hepatócito/química , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA