Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0292450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934760

RESUMO

Anatomical complexity and data dimensionality present major issues when analysing brain connectivity data. The functional and anatomical aspects of the connections taking place in the brain are in fact equally relevant and strongly intertwined. However, due to theoretical challenges and computational issues, their relationship is often overlooked in neuroscience and clinical research. In this work, we propose to tackle this problem through Smooth Functional Principal Component Analysis, which enables to perform dimensional reduction and exploration of the variability in functional connectivity maps, complying with the formidably complicated anatomy of the grey matter volume. In particular, we analyse a population that includes controls and subjects affected by schizophrenia, starting from fMRI data acquired at rest and during a task-switching paradigm. For both sessions, we first identify the common modes of variation in the entire population. We hence explore whether the subjects' expressions along these common modes of variation differ between controls and pathological subjects. In each session, we find principal components that are significantly differently expressed in the healthy vs pathological subjects (with p-values < 0.001), highlighting clearly interpretable differences in the connectivity in the two subpopulations. For instance, the second and third principal components for the rest session capture the imbalance between the Default Mode and Executive Networks characterizing schizophrenia patients.


Assuntos
Encéfalo , Esquizofrenia , Humanos , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Substância Cinzenta/patologia , Vias Neurais
2.
Biometrics ; 79(4): 3510-3521, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36807198

RESUMO

In this work, we introduce a family of methods for the analysis of data observed at locations scattered in three-dimensional (3D) domains, with possibly complicated shapes. The proposed family of methods includes smoothing, regression, and functional principal component analysis for functional signals defined over (possibly nonconvex) 3D domains, appropriately complying with the nontrivial shape of the domain. This constitutes an important advance with respect to the literature, because the available methods to analyze data observed in 3D domains rely on Euclidean distances, which are inappropriate when the shape of the domain influences the phenomenon under study. The common building block of the proposed methods is a nonparametric regression model with differential regularization. We derive the asymptotic properties of the methods and show, through simulation studies, that they are superior to the available alternatives for the analysis of data in 3D domains, even when considering domains with simple shapes. We finally illustrate an application to a neurosciences study, with neuroimaging signals from functional magnetic resonance imaging, measuring neural activity in the gray matter, a nonconvex volume with a highly complicated structure.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Análise de Componente Principal , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Córtex Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA