Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Fish Physiol Biochem ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970761

RESUMO

Environmental pollution, particularly from textile industry effluents, raises concerns globally. The aim of this study is to investigate the hepatotoxicity of Sudan Black B (SBB), a commonly used textile azo dye, on embryonic zebrafish. SBB exposure led to concentration-dependent mortality, reaching 100% at 0.8 mM, accompanied by growth retardation and diverse malformations in zebrafish. Biochemical marker analysis indicated adaptive responses to SBB, including increased SOD, CAT, NO, and LDH, alongside decreased GSH levels. Liver morphology analysis unveiled significant alterations, impacting metabolism and detoxification. Also, glucose level was declined and lipid level elevated in SBB-exposed in vivo zebrafish. Inflammatory gene expressions (TNF-α, IL-10, and INOS) showcased a complex regulatory interplay, suggesting an organismal attempt to counteract pro-inflammatory states during SBB exposure. The increased apoptosis revealed a robust hepatic cellular response due to SBB, aligning with observed liver tissue damage and inflammatory events. This multidimensional study highlights the intricate web of responses due to SBB exposure, which is emphasizing the need for comprehensive understanding and targeted mitigation strategies. The findings bear the implications for both aquatic ecosystems and potentially parallels to human health, underscoring the imperative for sustained research in this critical domain.

2.
Bioorg Med Chem Lett ; 110: 129881, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996936

RESUMO

The direct-linked coumarin-benzimidazole hybrids, featuring aryl and n-butyl substituents at the N1-position of benzimidazole were synthesized through a Knoevenagel condensation reaction. This reaction involved the condensation of 1,2-diaminobenzene derivatives with coumarin-3-carboxylic acids in the presence of polyphosphoric acid (PPA) at 154 °C. The in vitro antibacterial potency of the hybrid molecules against different gram-positive and gram-negative bacterial strains led to the identification of the hybrids 6m and 6p with a MIC value of 6.25 µg/mL against a gram-negative bacterium, Klebsiella pneumonia ATCC 27736. Cell viability studies on THP-1 cells demonstrated that the compounds 6m and 6p were non-toxic at a concentration of 50 µM. Furthermore, in vivo efficacy studies using a murine neutropenic thigh infection model revealed that both compounds significantly reduced bacterial (Klebsiella pneumonia ATCC 27736) counts (more than 2 log) compared to the control group. Additionally, both compounds exhibited favorable physicochemical properties and drug-likeness characteristics. Consequently, these compounds hold promise as lead candidates for further development of effective antibacterial drugs.

3.
Food Chem Toxicol ; 191: 114861, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992409

RESUMO

The prevalent use of Azorubine (E122) and the unintentional food additive, Bisphenol A (BPA), in ready-to-drink (RTD) beverages raises significant health concerns, especially for children. The combined impact on embryonic development must be explored despite individual safety assessments. Our investigation revealed that the combined exposure of E122 and BPA at beverage concentration significantly induces mortality and morphological deformities, including reduced growth, pericardial edema, and yolk sac edema. The co-exposure triggers oxidative stress, impairing antioxidant enzyme responses and resulting in lipid and cellular damage. Notably, apoptotic cells are observed in the neural tube and notochord of the co-exposed larvae. Critical genes related to the antioxidant response elements (nrf2, ho1, and nqo1), apoptosis activation (bcl2, bax, and p53), and pro/anti-inflammatory cytokines (nfkb, tnfa, il1b, tgfb, il10, and il12) displayed substantial changes, highlighting the molecular mechanisms. Behavior studies indicated hypo-locomotion with reduced thigmotaxis and touch response in co-exposed larvae, distinguishing it from individual exposures. These findings underscore the neurodevelopmental impacts of E122 and BPA at reported beverage concentrations, emphasizing the urgent need for comprehensive safety assessments, particularly for child consumption.

4.
Comput Biol Chem ; 112: 108134, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38964206

RESUMO

Global public health is confronted with significant challenges due to the prevalence of cancer and the emergence of treatment resistance. This work focuses on the identification of cyclin-dependent kinase 2 (CDK2) through a systematic computational approach to discover novel cancer therapeutics. A ligand-based pharmacophore model was initially developed using a training set of seven potent CDK2 inhibitors. The obtained most robust model was characterized by three features: one donor (|Don|) and two acceptors (|Acc|). Screening this model against the ZINC database resulted in identifying 108 hits, which underwent further molecular docking studies. The docking results indicated binding affinity, with energy values ranging from -6.59 kcal mol⁻¹ to -7.40 kcal mol⁻¹ compared to the standard Roscovitine. The top 10 compounds (Z1-Z10) selected from the docking data were further screened for ADMET profiling, ensuring their compliance with pharmacokinetic and toxicological criteria. The top 3 compounds (Z1-Z3) chosen from the docking were subjected to Density Functional Theory (DFT) studies. They revealed significant variations in electronic properties, providing insights into the reactivity, stability, and polarity of these compounds. Molecular dynamics simulations confirmed the stability of the ligand-protein complexes, with acceptable RMSD and RMSF values. Specifically, compound Z1 demonstrated stability, around 2.4 Å, and maintained throughout the 100 ns simulation period with minimal conformational changes, stable RMSD, and consistent protein-ligand interactions.

5.
Fish Shellfish Immunol ; 151: 109704, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880362

RESUMO

White feces syndrome (WFS) is a multifactorial disease that affects global shrimp production. The diagnostic approach to identify WFS involves traditional and molecular scientific methods by examining histopathology, bioassays, PCR (polymerase chain reaction), and calorimetric estimation. The pathogenesis of WFS is closely associated with Vibrio spp., intestinal microbiota (IM) dysbiosis, and Enterocytozoon hepatopenaei (EHP). It also has caused over 10-15 % loss in the aquaculture industry and is also known to cause retardation, lethargy and slowly leading to high mortality in shrimp farms. Therefore, it is necessary to understand the molecular mechanisms processed under the association of IM dysbiosis, Vibrio spp., and EHP to analyze the impact of disease on the innate immune system of shrimp. However, only very few reviews have described the molecular pathways involved in WFS. Hence, this review aims to elucidate an in-depth analysis of molecular pathways involved in the innate immune system of shrimp and their response to pathogens. The analysis and understanding of the impact of shrimp's innate immune system on WFS would help in developing treatments to prevent the spread of disease, thereby improving the economic condition of shrimp farms worldwide.

6.
Mol Neurobiol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837103

RESUMO

Oxidative stress and the accumulation of misfolded proteins in the brain are the main causes of Parkinson's disease (PD). Several nanoparticles have been used as therapeutics for PD. Despite their therapeutic potential, these nanoparticles induce multiple stresses upon entry. Selenium (Se), an essential nutrient in the human body, helps in DNA formation, stress control, and cell protection from damage and infections. It can also regulate thyroid hormone metabolism, reduce brain damage, boost immunity, and promote reproductive health. Selenium nanoparticles (Se-NPs), a bioactive substance, have been employed as treatments in several disciplines, particularly as antioxidants. Se-NP, whether functionalized or not, can protect mitochondria by enhancing levels of reactive oxygen species (ROS) scavenging enzymes in the brain. They can also promote dopamine synthesis. By inhibiting the aggregation of tau, α-synuclein, and/or Aß, they can reduce the cellular toxicities. The ability of the blood-brain barrier to absorb Se-NPs which maintain a healthy microenvironment is essential for brain homeostasis. This review focuses on stress-induced neurodegeneration and its critical control using Se-NP. Due to its ability to inhibit cellular stress and the pathophysiologies of PD, Se-NP is a promising neuroprotector with its anti-inflammatory, non-toxic, and antimicrobial properties.

7.
Drug Chem Toxicol ; : 1-16, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910278

RESUMO

The growing concern about pollution and toxicity in aquatic as well as terrestrial organisms is predominantly caused due to waterborne exposure and poses a risk to environmental systems and human health. This study addresses the co-toxic effects of cadmium (Cd) and ketoprofen (KPF), representing heavy metal and pharmaceutical discharge pollutants, respectively, in aquatic ecosystems. A 96-h acute toxicity assessment was conducted using zebrafish embryos. The results indicated that high dosages of KPF (10, 15, and 100 µg/mL) and Cd (10 and 15 µg/mL) reduced survivability and caused concentration-dependent deformities such as scoliosis and yolk sac edema. These findings highlight the potential defects in development and metabolism, as evidenced by hemolysis tests demonstrating dose-dependent effects on blood cell integrity. Furthermore, this study employs adult zebrafish for a 42-day chronic exposure to Cd and KPF (10 and 100 µg/L) alone or combined (10 + 10 and 100 + 100 µg/L) to assess organ-specific Cd and KPF accumulation in tissue samples. Organ-specific accumulation patterns underscore complex interactions impacting respiratory, metabolic, and detoxification functions. Prolonged exposure induces reactive oxygen species formation, compromising antioxidant defense systems. Histological examinations reveal structural changes in gills, gastrointestinal, kidney, and liver tissues, suggesting impairments in respiratory, osmoregulatory, nutritional, and immune functions. This study emphasizes the importance of conducting extensive research on co-toxic effects to assist with environmental risk assessments and safeguard human health and aquatic ecosystems.

9.
BMC Oral Health ; 24(1): 715, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907185

RESUMO

BACKGROUND: Dental pathogens play a crucial role in oral health issues, including tooth decay, gum disease, and oral infections, and recent research suggests a link between these pathogens and oral cancer initiation and progression. Innovative therapeutic approaches are needed due to antibiotic resistance concerns and treatment limitations. METHODS: We synthesized and analyzed piperine-coated zinc oxide nanoparticles (ZnO-PIP NPs) using UV spectroscopy, SEM, XRD, FTIR, and EDAX. Antioxidant and antimicrobial effectiveness were evaluated through DPPH, ABTS, and MIC assays, while the anticancer properties were assessed on KB oral squamous carcinoma cells. RESULTS: ZnO-PIP NPs exhibited significant antioxidant activity and a MIC of 50 µg/mL against dental pathogens, indicating strong antimicrobial properties. Interaction analysis revealed high binding affinity with dental pathogens. ZnO-PIP NPs showed dose-dependent anticancer activity on KB cells, upregulating apoptotic genes BCL2, BAX, and P53. CONCLUSIONS: This approach offers a multifaceted solution to combatting both oral infections and cancer, showcasing their potential for significant advancement in oral healthcare. It is essential to acknowledge potential limitations and challenges associated with the use of ZnO NPs in clinical applications. These may include concerns regarding nanoparticle toxicity, biocompatibility, and long-term safety. Further research and rigorous testing are warranted to address these issues and ensure the safe and effective translation of ZnO-PIP NPs into clinical practice.


Assuntos
Alcaloides , Apoptose , Benzodioxóis , Biofilmes , Neoplasias Bucais , Piperidinas , Alcamidas Poli-Insaturadas , Óxido de Zinco , Proteína X Associada a bcl-2 , Humanos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/efeitos dos fármacos , Benzodioxóis/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Células KB , Nanopartículas Metálicas/uso terapêutico , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Nanopartículas , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/efeitos dos fármacos , Difração de Raios X , Óxido de Zinco/farmacologia
10.
Eur J Pharmacol ; 976: 176680, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38810716

RESUMO

The escalating focus on ageing-associated disease has generated substantial interest in the phenomenon of cognitive impairment linked to diabetes. Hyperglycemia exacerbates oxidative stress, contributes to ß-amyloid accumulation, disrupts mitochondrial function, and impairs cognitive function. Existing therapies have certain limitations, and apigenin (AG), a natural plant flavonoid, has piqued interest due to its antioxidant, anti-inflammatory, and anti-hyperglycemic properties. So, we anticipate that AG might be a preventive medicine for hyperglycemia-associated amnesia. To test our hypothesis, naïve zebrafish were trained to acquire memory and pretreated with AG. Streptozotocin (STZ) was administered to mimic hyperglycemia-induced memory dysfunction. Spatial memory was assessed by T-maze and object recognition through visual stimuli. Acetylcholinesterase (AChE) activity, antioxidant enzyme status, and neuroinflammatory genes were measured, and histopathology was performed in the brain to elucidate the neuroprotective mechanism. AG exhibits a prophylactic effect and improves spatial learning and discriminative memory of STZ-induced amnesia in zebrafish under hyperglycemic conditions. AG also reduces blood glucose levels, brain oxidative stress, and AChE activity, enhancing cholinergic neurotransmission. AG prevented neuronal damage by regulating brain antioxidant response elements (ARE), collectively contributing to neuroprotective properties. AG demonstrates a promising effect in alleviating memory dysfunction and mitigating pathological changes via activation of the Nrf2/ARE mechanism. These findings underscore the therapeutic potential of AG in addressing memory dysfunction and neurodegenerative changes associated with hyperglycemia.


Assuntos
Amnésia , Apigenina , Hiperglicemia , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores , Estresse Oxidativo , Peixe-Zebra , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Amnésia/tratamento farmacológico , Amnésia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apigenina/farmacologia , Apigenina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Proteínas de Peixe-Zebra/metabolismo , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Masculino , Estreptozocina , Aprendizagem em Labirinto/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Modelos Animais de Doenças
11.
Environ Toxicol Pharmacol ; 109: 104479, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821154

RESUMO

Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices.

13.
Tissue Cell ; 88: 102404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759521

RESUMO

Follicular maturation arrest is a prevalent endocrine disorder characterized by hormonal imbalance, ovarian dysfunction, and metabolic disturbances leading to Polycystic ovarian syndrome (PCOS). Tanshinone IIA (TIIA), a bioactive compound derived from Salvia miltiorrhiza, has shown promising therapeutic potential in various diseases, including cardiovascular diseases and cancer. However, its effects on reproductive health and gynecological disorders, particularly PCOS, remain poorly understood. In this study, we investigated the potential therapeutic effects of TIIA on ovarian function. Using a combination of experimental and computational approaches, we elucidated the molecular mechanisms underlying TIIA's pharmacological impact on ovarian function, follicular development, and androgen receptor signaling. Molecular docking and dynamics simulations revealed that TIIA interacts with the human androgen receptor (HAR), modulating its activity and downstream signaling pathways. Our results demonstrate that TIIA treatment alleviates PCOS-like symptoms in a zebrafish model, including improved follicular development, lowered GSI index, improved antioxidant status (SOD, CAT), decreased LDH levels, and enhanced AChE levels by regulating Tox3 and Dennd1a pathway. Our findings suggest that TIIA may hold promise as a novel therapeutic agent for the management of PCOS or ovulation induction.


Assuntos
Abietanos , Folículo Ovariano , Síndrome do Ovário Policístico , Receptores Androgênicos , Salvia miltiorrhiza , Peixe-Zebra , Animais , Humanos , Abietanos/farmacologia , Receptores Androgênicos/metabolismo , Salvia miltiorrhiza/química , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Folículo Ovariano/patologia , Feminino , Simulação de Acoplamento Molecular , Proteínas de Peixe-Zebra/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
14.
Br J Pharmacol ; 181(16): 2947-2963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679467

RESUMO

BACKGROUND AND PURPOSE: Parkinson's disease (PD) is a prevalent neurodegenerative movement disorder characterized by motor dysfunction. Environmental factors, especially manganese (Mn), contribute significantly to PD. Existing therapies are focused on motor coordination, whereas nonmotor features such as neuropsychiatric symptoms are often neglected. Daidzein (DZ), a phytoestrogen, has piqued interest due to its antioxidant, anti-inflammatory, and anxiolytic properties. Therefore, we anticipate that DZ might be an effective drug to alleviate the nonmotor symptoms of Mn-induced Parkinsonism. EXPERIMENTAL APPROACH: Naïve zebrafish were exposed to 2 mM of Mn for 21 days and intervened with DZ. Nonmotor symptoms such as anxiety, social behaviour, and olfactory function were assessed. Acetylcholinesterase (AChE) activity and antioxidant enzyme status were measured from brain tissue through biochemical assays. Dopamine levels and histology were performed to elucidate neuroprotective mechanism of DZ. KEY RESULTS: DZ exhibited anxiolytic effects in a novel environment and also improved intra and inter fish social behaviour. DZ improved the olfactory function and response to amino acid stimuli in Mn-induced Parkinsonism. DZ reduced brain oxidative stress and AChE activity and prevented neuronal damage. DZ increased DA level in the brain, collectively contributing to neuroprotection. CONCLUSION AND IMPLICATIONS: DZ demonstrated a promising effect on alleviating nonmotor symptoms such as anxiety and olfactory dysfunction, through the mitigation of cellular damage. These findings underscore the therapeutic potential of DZ in addressing nonmotor neurotoxicity induced by heavy metals, particularly in the context of Mn-induced Parkinsonism.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Isoflavonas , Manganês , Transtornos Parkinsonianos , Peixe-Zebra , Animais , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Manganês/toxicidade , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Acetilcolinesterase/metabolismo , Dopamina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Masculino , Ansiedade/tratamento farmacológico , Ansiedade/induzido quimicamente , Comportamento Social
15.
Drug Chem Toxicol ; : 1-18, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658397

RESUMO

Industrial expansion and inadequate environmental safety measures are major contributors to environmental contamination, with heavy metals (HMs) and pharmaceutical waste playing crucial roles. Their negative effects are most noticeable in aquatic species and vegetation, where they accumulate in tissues and cause harmful results. Interactions between HMs and pharmaceutical molecules result in the production of metal-drug complexes (MDCs), which have the potential to disturb diverse ecosystems and their interdependence. However, present studies frequently focus on individual pollutants and their effects on specific environmental parameters, leaving out the cumulative effects of pollutants and their processes across several environmental domains. To address this gap, this review emphasizes the environmental sources of HMs, elucidates their emission pathways during anthropogenic activities, investigates the interactions between HMs and pharmaceutical substances, and defines the mechanisms underlying the formation of MDCs across various ecosystems. Furthermore, this review underscores the simultaneous occurrence of HMs and pharmaceutical waste across diverse ecosystems, including the atmosphere, soil, and water resources, and their incorporation into biotic organisms across trophic levels. It is important to note that these complex compounds represent a higher risk than individual contaminants.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38641085

RESUMO

In this study, we investigated the possible ecotoxicological effect of co-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (Danio rerio). After six days of exposure, we noticed that the co-exposure to PS-NP (100 µg/L) and DCF (at 50 and 500 µg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the TNF-α, COX-2, and IL-1ß expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.


Assuntos
Diclofenaco , Desenvolvimento Embrionário , Estresse Oxidativo , Poliestirenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Diclofenaco/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Nanopartículas/toxicidade , Microplásticos/toxicidade , Sinergismo Farmacológico
17.
Biomedicines ; 12(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38672144

RESUMO

A series of novel 1,5-diaryl pyrazole derivatives targeting the COX enzyme were designed by combined ligand and structure-based approach. The designed molecules were then further subjected to ADMET and molecular docking studies. Out of 34 designed compounds, the top-10 molecules from the computation studies were synthesized, characterized, and evaluated for COX-2 inhibition and anti-cancer activity. Initially, the target compounds were screened for the protein denaturation assay. The results of the top-five molecules T2, T3, T5, T6, and T9 were further subjected to in vitro COX-2 enzymatic assay and anti-cancer activity. As far as COX-2 inhibitory activity is considered, two compounds, T3 and T5, exhibited the half maximum inhibitory concentration (IC50) at 0.781 µM and 0.781 µM respectively. Further, the two compounds T3 and T5, when evaluated for COX-1 inhibition, exhibited excellent inhibitory activity with T3 IC50 of 4.655µM and T5 with IC50 of 5.596 µM. The compound T5 showed more significant human COX-2 inhibition, with a selectivity index of 7.16, when compared with T3, which had a selectivity index of 5.96. Further, in vitro anti-cancer activity was screened against two cancer cell lines in which compounds T2 and T3 were active against A549 cell lines and T6 was active against the HepG2 cell line. Stronger binding energy was found by comparing MM-PBSA simulations with molecular docking, which suggests that compounds T3 and T5 have a better possibility of being effective compounds, in which T5 showed higher binding affinity. The results suggest that these compounds have the potential to develop effective COX-2 inhibitors as anti-cancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA