Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Lipidol ; 34(4): 147-155, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171285

RESUMO

PURPOSE OF REVIEW: LDL in its oxidized form, or 'oxLDL', is now generally acknowledged to be highly proatherogenic and to play a significant role in atherosclerotic plaque formation. Therefore, there has been increasing interest in understanding the significance of oxLDL and its receptors in different phases of atherosclerosis, leading to the accumulation of additional data at the cellular, structural, and physiological levels. This review focuses on the most recent discoveries about these receptors and how they influence lipid absorption, metabolism, and inflammation in various cell types. RECENT FINDINGS: Two crystal structures of lectin-like oxLDL receptor-1 (LOX-1), one with a small molecule inhibitor and the other with a monoclonal antibody have been published. We recently demonstrated that the 'surface site' of LOX1, adjacent to the positively charged 'basic spine region' that facilitates oxLDL binding, is a targetable site for drug development. Further, recent human studies showed that soluble LOX-1 holds potential as a biomarker for cardiovascular disease diagnosis, prognosis, and assessing the efficacy of therapy. SUMMARY: Receptor-mediated oxLDL uptake results in cellular dysfunction of various cell types involved in atherogenesis and plaque development. The current advancements clearly demonstrate that targeting oxLDL-LOX-1 axis may lead to development of future therapeutics for the treatment of atherosclerotic cardiovascular and cerebrovascular diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Receptores de LDL Oxidado , Receptores Depuradores Classe E/metabolismo , Aterosclerose/metabolismo , Lipoproteínas LDL/metabolismo , Inflamação , Receptores de LDL
2.
Biochem Biophys Res Commun ; 662: 135-141, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37119729

RESUMO

Ascorbate (AsA) is a crucial antioxidant in plants, and its recycling is necessary for protecting cells from oxidative damage and imparting stress tolerance. The monodehydroascorbate reductase (MDHAR) enzyme of the ascorbate-glutathione pathway plays a vital role in recycling AsA from monodehydroascorbate (MDHA) radical. Pennisetum glaucum (Pg), also known as pearl millet, is known to be more tolerant to abiotic stress than other food crops, such as rice. However, the contribution of MDHAR from this sessile plant to its unique stress tolerance mechanism is not well understood. In this study, we isolated a gene encoding the MDHAR enzyme from heat stress-adapted pearl millet and characterized it using enzyme kinetics, thermal stability assays, and crystal structure determination. Our results indicate that PgMDHAR is a more robust enzyme than its rice counterpart (Oryza sativa; Os). We solved the crystal structure of PgMDHAR at 1.8 Å and found that the enzyme has a more compact structure and greater stability than OsMDHAR. Using hybrid quantum mechanics and molecular mechanics calculations, we demonstrate that the structure of PgMDHAR contributes to increased stability towards bound FAD. Overall, the higher structural stability and affinity for NADH demonstrated by PgMDHAR are expected to impart improved stress tolerance. Our findings suggest that transgenic food crops expressing MDHAR from stress-adapted pearl millet may exhibit better tolerance to oxidative stress in the unpredictable climatic conditions prevalent today.


Assuntos
Pennisetum , Ácido Ascórbico/metabolismo , Ácido Desidroascórbico/metabolismo
3.
Arch Biochem Biophys ; 741: 109603, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084805

RESUMO

Plant dehydroascorbate reductases (DHARs) are only known as soluble antioxidant enzymes of the ascorbate-glutathione pathway. They recycle ascorbate from dehydroascorbate, thereby protecting plants from oxidative stress and the resulting cellular damage. DHARs share structural GST fold with human chloride intracellular channels (HsCLICs) which are dimorphic proteins that exists in soluble enzymatic and membrane integrated ion channel forms. While the soluble form of DHAR has been extensively studied, the existence of a membrane integrated form remains unknown. We demonstrate for the first time using biochemistry, immunofluorescence confocal microscopy, and bilayer electrophysiology that Pennisetum glaucum DHAR (PgDHAR) is dimorphic and is localized to the plant plasma membrane. In addition, membrane translocation increases under induced oxidative stress. Similarly, HsCLIC1 translocates more into peripheral blood mononuclear cells (PBMCs) plasma membrane under induced oxidative stress conditions. Moreover, purified soluble PgDHAR spontaneously inserts and conducts ions in reconstituted lipid bilayers, and the addition of detergent facilitates insertion. In addition to the well-known soluble enzymatic form, our data provides conclusive evidence that plant DHAR also exists in a novel membrane-integrated form. Thus, the structure of DHAR ion channel form will help gain deeper insights into its function across various life forms.


Assuntos
Leucócitos Mononucleares , Oxirredutases , Humanos , Oxirredutases/metabolismo , Oxirredução , Ácido Ascórbico/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Canais Iônicos/metabolismo
4.
Plant Direct ; 7(3): e481, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911252

RESUMO

The sugar will eventually be exported transporter (SWEET) members in Arabidopsis, AtSWEET11 and AtSWEET12 are the important sucrose efflux transporters that act synergistically to perform distinct physiological roles. These two transporters are involved in apoplasmic phloem loading, seed filling, and sugar level alteration at the site of pathogen infection. Here, we performed the structural analysis of the sucrose binding pocket of AtSWEET11 and AtSWEET12 using molecular docking followed by rigorous molecular dynamics (MD) simulations. We observed that the sucrose molecule binds inside the central cavity and in the middle of the transmembrane (TM) region of AtSWEET11 and AtSWEET12, that allows the alternate access to the sucrose molecule from either side of the membrane during transport. Both AtSWEET11 and AtSWEET12, shares the similar amino acid residues that interact with sucrose molecule. Further, to achieve more insights on the role of these two transporters in other plant species, we did the phylogenetic and the in-silico analyses of AtSWEET11 and AtSWEET12 orthologs from 39 economically important plants. We reported the extensive information on the gene structure, protein domain and cis-acting regulatory elements of AtSWEET11 and AtSWEET12 orthologs from different plants. The cis-elements analysis indicates the involvement of AtSWEET11 and AtSWEET12 orthologs in plant development and also during abiotic and biotic stresses. Both in silico and in planta expression analysis indicated AtSWEET11 and AtSWEET12 are well-expressed in the Arabidopsis leaf tissues. However, the orthologs of AtSWEET11 and AtSWEET12 showed the differential expression pattern with high or no transcript expression in the leaf tissues of different plants. Overall, these results offer the new insights into the functions and regulation of AtSWEET11 and AtSWEET12 orthologs from different plant species. This might be helpful in conducting the future studies to understand the role of these two crucial transporters in Arabidopsis and other crop plants.

5.
Biochem Biophys Res Commun ; 623: 59-65, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872543

RESUMO

Lectin-like oxidized low-density lipoprotein (ox-LDL) receptor 1 (LOX-1) is a vital scavenger receptor involved in ox-LDL binding, internalization, and subsequent proatherogenic signaling leading to cellular dysfunction and atherosclerotic plaque formation. Existing data suggest that modulation of ox-LDL - LOX-1 interaction can prevent or slow down atherosclerosis. Therefore, we utilized computational methods such as multi-solvent simulation and characterized two top-ranked druggable sites. Using systematic molecular docking followed by atomistic molecular dynamics simulation, we have identified and shortlisted small molecules from the NCI library that target two key binding sites. We demonstrate, using surface plasmon resonance (SPR), that four of the shortlisted molecules bind one-on-one to the purified C-terminal domain (CTLD) of LOX-1 receptor with high affinity (KD), ranging from 4.9 nM to 20.1 µM. Further, we performed WaterMap analysis to understand the role of individual water molecules in small molecule binding and the LOX-1-ligand complex stability. Our data clearly show that LOX-1 is druggable with small molecules. Our study provides strategies to identify novel inhibitors to attenuate ox-LDL - LOX-1 interaction.


Assuntos
Aterosclerose , Lipoproteínas LDL , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Simulação de Acoplamento Molecular , Receptores Depuradores Classe E/metabolismo
6.
Biochem Biophys Res Commun ; 591: 110-117, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35007834

RESUMO

Ascorbate is an important cellular antioxidant that gets readily oxidized to dehydroascorbate (DHA). Recycling of DHA is therefore paramount in the maintenance of cellular homeostasis and preventing oxidative stress. Dehydroascorbate reductases (DHARs), in conjunction with glutathione (GSH), carry out this vital process in eukaryotes, among which plant DHARs have garnered considerable attention. A detailed kinetic analysis of plant DHARs relative to their human counterparts is, however, lacking. Chloride intracellular channels (HsCLICs) are close homologs of plant DHARs, recently demonstrated to share their enzymatic activity. This study reports the highest turnover rate for a plant DHAR from stress adapted Pennisetum glaucum (PgDHAR). In comparison, HsCLICs 1, 3, and 4 reduced DHA at a significantly lower rate. We further show that the catalytic cysteine from both homologs was susceptible to varying degrees of oxidation, validated by crystal structures and mass-spectrometry. Our findings may have broader implications on crop improvement using pearl millet DHAR vis-à-vis discovery of cancer therapeutics targeting Vitamin-C recycling capability of human CLICs.


Assuntos
Ácido Ascórbico/metabolismo , Oxirredutases/metabolismo , Pennisetum/enzimologia , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Cisteína/metabolismo , Humanos , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Oxirredutases/química
7.
Chem Commun (Camb) ; 57(78): 10083-10086, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34514483

RESUMO

Zinc deficiency is linked to poor prognosis in COVID-19 patients while clinical trials with zinc demonstrate better clinical outcomes. The molecular targets and mechanistic details of the anti-coronaviral activity of zinc remain obscure. We show that zinc not only inhibits the SARS-CoV-2 main protease (Mpro) with nanomolar affinity, but also viral replication. We present the first crystal structure of the Mpro-Zn2+ complex at 1.9 Å and provide the structural basis of viral replication inhibition. We show that Zn2+ coordinates with the catalytic dyad at the enzyme active site along with two previously unknown water molecules in a tetrahedral geometry to form a stable inhibited Mpro-Zn2+ complex. Further, the natural ionophore quercetin increases the anti-viral potency of Zn2+. As the catalytic dyad is highly conserved across SARS-CoV, MERS-CoV and all variants of SARS-CoV-2, Zn2+ mediated inhibition of Mpro may have wider implications.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Zinco/química , Animais , Sítios de Ligação , COVID-19/patologia , Domínio Catalítico , Chlorocebus aethiops , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Humanos , Íons/química , Cinética , Simulação de Dinâmica Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , SARS-CoV-2/isolamento & purificação , Ressonância de Plasmônio de Superfície , Termodinâmica , Células Vero , Replicação Viral/efeitos dos fármacos
8.
Biochem Biophys Res Commun ; 473(4): 1152-1157, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27067046

RESUMO

Dehydroascorbate reductase (DHAR), a member of the glutathione-S-transferase (GST) family, reduces dehydroascorbate (DHA) to ascorbate (AsA; Vitamin-C) in a glutathione (GSH)-dependent manner and in doing so, replenishes the critical AsA pool of the cell. To understand the enzyme mechanism in detail, we determined the crystal structure of a plant DHAR from Pennisetum glaucum (PgDHAR) using Iodide-Single Anomalous Dispersion (SAD) and Molecular replacement methods, in two different space groups. Here, we show PgDHAR in complex with two non-native ligands, viz. an acetate bound at the G-site, which resembles the γ-carboxyl moiety of GSH, and a glycerol at the H-site, which shares the backbone of AsA. We also show that, in the absence of bound native substrates, these non-native ligands help define the critical 'hook points' in the DHAR enzyme active site. Further, our data suggest that these non-native ligands can act as the logical bootstrapping points for iterative design of inhibitors/analogs for DHARs.


Assuntos
Ácido Ascórbico/química , Glutationa Transferase/química , Glutationa Transferase/ultraestrutura , Pennisetum/metabolismo , Proteínas de Plantas/química , Sítios de Ligação , Ativação Enzimática , Ligantes , Simulação de Acoplamento Molecular , Proteínas de Plantas/análise , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
9.
Nat Commun ; 5: 5322, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25358815

RESUMO

Conjugative plasmids are typically locked in intergenomic and sexual conflicts with co-resident rivals, whose translocation they block using fertility inhibition factors (FINs). We describe here the first crystal structure of an enigmatic FIN Osa deployed by the proteobacterial plasmid pSa. Osa contains a catalytically active version of the ParB/Sulfiredoxin fold with both ATPase and DNase activity, the latter being regulated by an ATP-dependent switch. Using the Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS), a relative of the conjugative T4SS, we demonstrate that catalytically active Osa blocks T-DNA transfer into plants. With a partially reconstituted T4SS in vitro, we show that Osa degrades T-DNA in the T-DNA-VirD2 complex before its translocation. Further, we present evidence for conservation and interplay between ATPase and DNase activities throughout the ParB/Sulfiredoxin fold, using other members of the family, namely P1 ParB and RK2 KorB, which have general functional implications across diverse biological contexts.


Assuntos
Proteínas de Bactérias/metabolismo , Conjugação Genética , Plasmídeos/fisiologia , Adenosina Trifosfatases/metabolismo , DNA Bacteriano/metabolismo , Desoxirribonucleases/metabolismo , Fertilidade , Multimerização Proteica , Sistemas de Secreção Tipo IV
10.
J Struct Biol ; 178(3): 233-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22525817

RESUMO

OmpF is a major general diffusion porin of Salmonella typhi, a Gram-negative bacterium, which is an obligatory human pathogen causing typhoid. The structure of S. typhi Ty21a OmpF (PDB Id: 3NSG) determined at 2.8 Å resolution by X-ray crystallography shows a 16-stranded ß-barrel with three ß-barrel monomers associated to form a trimer. The packing observed in S. typhi Ty21a rfOmpF crystals has not been observed earlier in other porin structures. The variations seen in the loop regions provide a starting point for using the S. typhi OmpF for structure-based multi-valent vaccine design. Along one side of the S. typhi Ty21a OmpF pore there exists a staircase arrangement of basic residues (20R, 60R, 62K, 65R, 77R, 130R and 16K), which also contribute, to the electrostatic potential in the pore. This structure suggests the presence of asymmetric electrostatics in the porin oligomer. Moreover, antibiotic translocation, permeability and reduced uptake in the case of mutants can be understood based on the structure paving the way for designing new antibiotics.


Assuntos
Porinas/química , Porinas/metabolismo , Salmonella typhi/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Dados de Sequência Molecular , Porinas/genética , Dobramento de Proteína , Estrutura Secundária de Proteína , Salmonella typhi/genética
11.
Biomol NMR Assign ; 6(1): 87-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21822941

RESUMO

Lysozyme (Lyz) encoded by phage P1 is required for host cell lysis upon infection. Lyz has a N-terminal Signal Anchor Release (SAR) domain, responsible for its secretion into the periplasm and for its accumulation in a membrane tethered inactive form. Here, we report sequence-specific (1)H, (13)C and (15)N resonance assignments for secreted inactive form of Lyz at pH 4.5.


Assuntos
Bacteriófago P1/enzimologia , Endopeptidases/química , Muramidase/química , Ressonância Magnética Nuclear Biomolecular , Endopeptidases/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Muramidase/metabolismo , Estrutura Secundária de Proteína
12.
Protein Sci ; 20(5): 827-33, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21370306

RESUMO

In eukaryotes, calcium-binding proteins play a pivotal role in diverse cellular processes, and recent findings suggest similar roles for bacterial proteins at different stages in their life cycle. Here, we report the crystal structure of calcium dodecin, Rv0379, from Mycobacterium tuberculosis with a dodecameric oligomeric assembly and a unique calcium-binding motif. Structure and sequence analysis were used to identify orthologs of Rv0379 with different ligand-binding specificity.


Assuntos
Proteínas de Bactérias/química , Cálcio/química , Mycobacterium tuberculosis/metabolismo , Estrutura Terciária de Proteína , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/genética , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectrofotometria Atômica
13.
Nat Struct Mol Biol ; 16(11): 1192-4, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19881499

RESUMO

R(21), the lysozyme of coliphage 21, has an N-terminal signal-anchor-release (SAR) domain that directs its secretion in a membrane-tethered, inactive form and then its release and activation in the periplasm. Both genetic and crystallographic studies show that the SAR domain, once extracted from the bilayer, refolds into the body of the enzyme and effects muralytic activation by repositioning one residue of the canonical lysozyme catalytic triad.


Assuntos
Bacteriófago P1/metabolismo , Colífagos/metabolismo , Muramidase/química , Muramidase/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
Proc Natl Acad Sci U S A ; 100(5): 2243-8, 2003 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-12606717

RESUMO

In bacteria, the majority of exported proteins are translocated by the Sec system, which recognizes the signal sequence of a preprotein and uses ATP and the proton motive force to mediate protein translocation across the cytoplasmic membrane. SecA is an essential protein component of this system, containing the molecular motor that facilitates translocation. Here we report the three-dimensional structure of the SecA protein of Mycobacterium tuberculosis. Each subunit of the homodimer contains a "motor" domain and a translocation domain. The structure predicts that SecA can interact with the SecYEG pore and function as a molecular ratchet that uses ATP hydrolysis for physical movement of the preprotein. Knowledge of this structure provides a framework for further elucidation of the translocation process.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Mycobacterium tuberculosis/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Citoplasma/metabolismo , Dimerização , Elétrons , Hidrólise , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA