Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742438

RESUMO

Bone is increasingly recognized as a target for diabetic complications. In order to evaluate the direct effects of high glucose on bone, we investigated the global transcriptional changes induced by hyperglycemia in osteoblasts in vitro. Rat bone marrow-derived mesenchymal stromal cells were differentiated into osteoblasts for 10 days, and prior to analysis, they were exposed to hyperglycemia (25 mM) for the short-term (1 or 3 days) or long-term (10 days). Genes and pathways regulated by hyperglycemia were identified using mRNA sequencing and verified with qPCR. Genes upregulated by 1-day hyperglycemia were, for example, related to extracellular matrix organization, collagen synthesis and bone formation. This stimulatory effect was attenuated by 3 days. Long-term exposure impaired osteoblast viability, and downregulated, for example, extracellular matrix organization and lysosomal pathways, and increased intracellular oxidative stress. Interestingly, transcriptional changes by different exposure times were mostly unique and only 89 common genes responding to glucose were identified. In conclusion, short-term hyperglycemia had a stimulatory effect on osteoblasts and bone formation, whereas long-term hyperglycemia had a negative effect on intracellular redox balance, osteoblast viability and function.


Assuntos
Regulação da Expressão Gênica , Glucose , Osteoblastos , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Animais , Glucose/metabolismo , Ratos , Regulação da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Hiperglicemia/metabolismo , Hiperglicemia/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Transcriptoma , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Sobrevivência Celular/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Células Cultivadas , Estresse Oxidativo/efeitos dos fármacos
2.
Diabetes Obes Metab ; 26(1): 251-261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818602

RESUMO

AIM: High body weight is a protective factor against osteoporosis, but obesity also suppresses bone metabolism and whole-body insulin sensitivity. However, the impact of body weight and regular training on bone marrow (BM) glucose metabolism is unclear. We studied the effects of regular exercise training on bone and BM metabolism in monozygotic twin pairs discordant for body weight. METHODS: We recruited 12 monozygotic twin pairs (mean ± SD age 40.4 ± 4.5 years; body mass index 32.9 ± 7.6, mean difference between co-twins 7.6 kg/m2 ; eight female pairs). Ten pairs completed the 6-month long training intervention. We measured lumbar vertebral and femoral BM insulin-stimulated glucose uptake (GU) using 18 F-FDG positron emission tomography, lumbar spine bone mineral density and bone turnover markers. RESULTS: At baseline, heavier co-twins had higher lumbar vertebral BM GU (p < .001) and lower bone turnover markers (all p < .01) compared with leaner co-twins but there was no significant difference in femoral BM GU, or bone mineral density. Training improved whole-body insulin sensitivity, aerobic capacity (both p < .05) and femoral BM GU (p = .008). The training response in lumbar vertebral BM GU was different between the groups (time × group, p = .02), as GU tended to decrease in heavier co-twins (p = .06) while there was no change in leaner co-twins. CONCLUSIONS: In this study, regular exercise training increases femoral BM GU regardless of weight and genetics. Interestingly, lumbar vertebral BM GU is higher in participants with higher body weight, and training counteracts this effect in heavier co-twins even without reduction in weight. These data suggest that BM metabolism is altered by physical activity.


Assuntos
Medula Óssea , Resistência à Insulina , Humanos , Feminino , Adulto , Obesidade , Exercício Físico , Sobrepeso , Densidade Óssea
3.
J Hum Evol ; 177: 103341, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905703

RESUMO

Life history theory addresses how organisms balance development and reproduction. Mammals usually invest considerable energy into growth in infancy, and they do so incrementally less until reaching adult body size, when they shift energy to reproduction. Humans are unusual in having a long adolescence when energy is invested in both reproduction and growth, including rapid skeletal growth around puberty. Although many primates, especially in captivity, experience accelerated growth in mass around puberty, it remains unclear whether this represents skeletal growth. Without data on skeletal growth in nonhuman primates, anthropologists have often assumed the adolescent growth spurt is uniquely human, and hypotheses for its evolution have focused on other uniquely human traits. The lack of data is largely due to methodological difficulties of assessing skeletal growth in wild primates. Here, we use two urinary markers of bone turnover-osteocalcin and collagen-to study skeletal growth in a large, cross-sectional sample of wild chimpanzees (Pan troglodytes) at Ngogo, Kibale National Park, Uganda. For both bone turnover markers, we found a nonlinear effect of age, which was largely driven by males. For male chimpanzees, values for osteocalcin and collagen peaked at age 9.4 years and 10.8 years, respectively, which corresponds to early and middle adolescence. Notably, collagen values increased from 4.5 to 9 years, suggesting faster growth during early adolescence compared to late infancy. Biomarker levels plateaued at 20 years in both sexes, suggesting skeletal growth continues until then. Additional data, notably on females and infants of both sexes, are needed, as are longitudinal samples. However, our cross-sectional analysis suggests an adolescent growth spurt in the skeleton of chimpanzees, especially for males. Biologists should avoid claiming that the adolescent growth spurt is uniquely human, and hypotheses for the patterns of human growth should consider variation in our primate relatives.


Assuntos
Mamíferos , Pan troglodytes , Animais , Feminino , Masculino , Humanos , Adolescente , Criança , Estudos Transversais , Osteocalcina , Tamanho Corporal , Uganda , Biomarcadores
4.
Front Physiol ; 13: 1035516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523556

RESUMO

Bone is an active tissue that undergoes constant remodeling. Bone formation requires energy and one of the energy sources of bone-forming osteoblasts is glucose, which is transported inside the cells via glucose transporters. However, the role of class I glucose transporters in the differentiation and metabolism of osteoblasts and their precursors, bone marrow mesenchymal stromal cells (BMSCs) remains inconclusive. Our aim was to characterize the expression and contribution of main class I glucose transporters, GLUT1, GLUT3, and GLUT4, during osteoblast proliferation and differentiation. To investigate the role of each GLUT, we downregulated GLUTs with siRNA technology in primary rat BMSCs. Live-cell imaging and RNA-seq analysis was used to evaluate downstream pathways in silenced osteoblasts. Glucose transporters GLUT1, GLUT3, and GLUT4 had distinct expression patterns in osteoblasts. GLUT1 was abundant in BMSCs, but rapidly and significantly downregulated during osteoblast differentiation by up to 80% (p < 0.001). Similar downregulation was observed for GLUT4 (p < 0.001). In contrast, expression levels of GLUT3 remained stable during differentiation. Osteoblasts lacked GLUT2. Silencing of GLUT4 resulted in a significant decrease in proliferation and differentiation of preosteoblasts (p < 0.001) and several pathways related to carbohydrate metabolism and cell signaling were suppressed. However, silencing of GLUT3 resulted in increased proliferation (p < 0.001), despite suppression of several pathways involved in cellular metabolism, biosynthesis and actin organization. Silencing of GLUT1 had no effect on proliferation and less changes in the transcriptome. RNA-seq dataset further revealed that osteoblasts express also class II and III glucose transporters, except for GLUT7. In conclusion, GLUT1, -3 and -4 may all contribute to glucose uptake in differentiating osteoblasts. GLUT4 expression was clearly required for osteoblast proliferation and differentiation. GLUT1 appears to be abundant in early precursors, but stable expression of GLUT3 suggest also a role for GLUT3 in osteoblasts. Presence of other GLUT members may further contribute to fine-tuning of glucose uptake. Together, glucose uptake in osteoblast lineage appears to rely on several glucose transporters to ensure sufficient energy for new bone formation.

5.
Calcif Tissue Int ; 107(6): 529-542, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839842

RESUMO

Osteocalcin is a bone-specific protein which contains three glutamic acid residues (Glu) that undergo post-translational gamma-carboxylation. Uncarboxylated osteocalcin (ucOC) may participate in the regulation of glucose metabolism, thus measurement of ucOC could be useful in evaluating interactions between bone and glucose metabolism. We developed recombinant antibodies and immunoassay to specifically detect ucOC in human blood samples. ucOC-specific recombinant antibodies were selected from an antibody library by phage display. Four candidates were characterized, and one (Fab-AP13) was used to set up an immunoassay with a pre-existing MAb. Plasma ucOC levels were measured in subjects with normal fasting blood glucose (≤ 6 mmol/l, N = 46) or with hyperglycemia (≥ 7 mmol/l, N = 29). Further, we analyzed ucOC in age- and gender-matched patients with diagnosed type 2 diabetes (T2D, N = 49). Antibodies recognized ucOC without cross-reaction to carboxylated osteocalcin. Antibodies had unique binding sites at the carboxylation region, with Glu17 included in all epitopes. Immunoassay was set up and characterized. Immunoassay detected ucOC in serum and plasma, with on average 1.6-fold higher levels in plasma. ucOC concentrations were significantly lower in subjects with hyperglycemia (median 0.58 ng/ml, p = 0.008) or with T2D diagnosis (0.68 ng/ml, p = 0.015) than in subjects with normal blood glucose (1.01 ng/ml). ucOC negatively correlated with fasting plasma glucose in subjects without T2D (r = - 0.24, p = 0.035) but not in T2D patients (p = 0.41). Our immunoassay, based on the novel recombinant antibody, allows for specific and sensitive detection of ucOC in human circulation. Correlation between ucOC and plasma glucose suggests interactions between osteocalcin and glucose metabolism in humans.


Assuntos
Anticorpos/química , Osteocalcina/sangue , Idoso , Sítios de Ligação , Glicemia , Osso e Ossos , Reações Cruzadas , Diabetes Mellitus Tipo 2 , Epitopos , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
6.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32785654

RESUMO

CONTEXT: Exercise training improves bone mineral density, but little is known about the effects of training on bone marrow (BM) metabolism. BM insulin sensitivity has been suggested to play an important role in bone health and whole-body insulin sensitivity. OBJECTIVE: To study the effects of exercise training on BM metabolism. DESIGN: Randomized controlled trial. SETTING: Clinical research center. PARTICIPANTS: Sedentary healthy (n = 28, 40-55 years, all males) and insulin resistant (IR) subjects (n = 26, 43-55 years, males/females 16/10). INTERVENTION: Two weeks of sprint interval training or moderate-intensity continuous training. MAIN OUTCOME MEASURES: We measured femoral, lumbar, and thoracic BM insulin-stimulated glucose uptake (GU) and fasting free fatty acid uptake (FFAU) using positron-emission tomography and bone turnover markers from plasma. RESULTS: At baseline, GU was highest in lumbar, followed by thoracic, and lowest in femoral BM (all Ps < 0.0001). FFAU was higher in lumbar and thoracic than femoral BM (both Ps < 0.0001). BM FFAU and femoral BM GU were higher in healthy compared to IR men and in females compared to males (all Ps < 0.05). Training increased femoral BM GU similarly in all groups and decreased lumbar BM FFAU in males (all Ps < 0.05). Osteocalcin and PINP were lower in IR than healthy men and correlated positively with femoral BM GU and glycemic status (all Ps < 0.05). CONCLUSIONS: BM metabolism differs regarding anatomical location. Short-term training improves BM GU and FFAU in healthy and IR subjects. Bone turnover rate is decreased in insulin resistance and associates positively with BM metabolism and glycemic control. CLINICAL TRIAL REGISTRATION NUMBER: NCT01344928.


Assuntos
Medula Óssea/metabolismo , Exercício Físico/fisiologia , Resistência à Insulina/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Comportamento Sedentário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA