Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 7(1): 58, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618791

RESUMO

Vaccine-induced sterilizing protection from infection by Plasmodium parasites, the pathogens that cause malaria, will be essential in the fight against malaria as it would prevent both malaria-related disease and transmission. Stopping the relatively small number of parasites injected by the mosquito before they can migrate from the skin to the liver is an attractive means to this goal. Antibody-eliciting vaccines have been used to pursue this objective by targeting the major parasite surface protein present during this stage, the circumsporozoite protein (CSP). While CSP-based vaccines have recently had encouraging success in disease reduction, this was only achieved with extremely high antibody titers and appeared less effective for a complete block of infection (i.e., sterile protection). While such disease reduction is important, these and other results indicate that strategies focusing on CSP alone may not achieve the high levels of sterile protection needed for malaria eradication. Here, we show that monoclonal antibodies (mAbs) recognizing another sporozoite protein, TRAP/SSP2, exhibit a range of inhibitory activity and that these mAbs may augment CSP-based protection despite conferring no sterile protection on their own. Therefore, pursuing a multivalent subunit vaccine immunization is a promising strategy for improving infection-blocking malaria vaccines.

2.
Sci Rep ; 11(1): 11328, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059712

RESUMO

Following their inoculation by the bite of an infected Anopheles mosquito, the malaria parasite sporozoite forms travel from the bite site in the skin into the bloodstream, which transports them to the liver. The thrombospondin-related anonymous protein (TRAP) is a type 1 transmembrane protein that is released from secretory organelles and relocalized on the sporozoite plasma membrane. TRAP is required for sporozoite motility and host infection, and its extracellular portion contains adhesive domains that are predicted to engage host receptors. Here, we identified the human platelet-derived growth factor receptor ß (hPDGFRß) as one such protein receptor. Deletion constructs showed that the von Willebrand factor type A and thrombospondin repeat domains of TRAP are both required for optimal binding to hPDGFRß-expressing cells. We also demonstrate that this interaction is conserved in the human-infective parasite Plasmodium vivax, but not the rodent-infective parasite Plasmodium yoelii. We observed expression of hPDGFRß mainly in cells associated with the vasculature suggesting that TRAP:hPDGFRß interaction may play a role in the recognition of blood vessels by invading sporozoites.


Assuntos
Interações Hospedeiro-Patógeno , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células HEK293 , Humanos , Plasmodium vivax/metabolismo , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/isolamento & purificação
3.
Trends Parasitol ; 37(7): 651-663, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33589364

RESUMO

Plasmodium sporozoites exhibit a complex infection biology in the mosquito and mammalian hosts. The sporozoite apical secretory organelles, the micronemes and rhoptries, store protein mediators of parasite/host/vector interactions and must secrete them in a temporally and spatially well orchestrated manner. Micronemal proteins are critical for sporozoite motility throughout its journey from the mosquito midgut oocyst to the mammalian liver, and also for cell traversal (CT) and hepatocyte invasion. Rhoptry proteins, until recently thought to be only important for hepatocyte invasion, appear to also play an unexpected role in motility and in the interaction with mosquito tissue. Therefore, navigating the different microenvironments with secretion likely requires the sporozoite to have a more complex system of secretory organelles than previously appreciated.


Assuntos
Organelas/metabolismo , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Culicidae/parasitologia , Interações Hospedeiro-Parasita , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-30547015

RESUMO

Within the liver, Plasmodium sporozoites traverse cells searching for a "suitable" hepatocyte, invading these cells through a process that results in the formation of a parasitophorous vacuole (PV), within which the parasite undergoes intracellular replication as a liver stage. It was previously established that two members of the Plasmodium s48/45 protein family, P36 and P52, are essential for productive invasion of host hepatocytes by sporozoites as their simultaneous deletion results in growth-arrested parasites that lack a PV. Recent studies point toward a pathway of entry possibly involving the interaction of P36 with hepatocyte receptors EphA2, CD81, and SR-B1. However, the relationship between P36 and P52 during sporozoite invasion remains unknown. Here we show that parasites with a single P52 or P36 gene deletion each lack a PV after hepatocyte invasion, thereby pheno-copying the lack of a PV observed for the P52/P36 dual gene deletion parasite line. This indicates that both proteins are equally important in the establishment of a PV and act in the same pathway. We created a Plasmodium yoelii P36mCherry tagged parasite line that allowed us to visualize the subcellular localization of P36 and found that it partially co-localizes with P52 in the sporozoite secretory microneme organelles. Furthermore, through co-immunoprecipitation studies in vivo, we determined that P36 and P52 form a protein complex in sporozoites, indicating a concerted function for both proteins within the PV formation pathway. However, upon sporozoite stimulation, only P36 was released as a secreted protein while P52 was not. Our results support a model in which the putatively glycosylphosphatidylinositol (GPI)-anchored P52 may serve as a scaffold to facilitate the interaction of secreted P36 with the host cell during sporozoite invasion of hepatocytes.


Assuntos
Hepatócitos/parasitologia , Malária/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Animais , Antígenos CD36/metabolismo , Culicidae , Citoplasma/metabolismo , Feminino , Deleção de Genes , Técnicas de Inativação de Genes , Glicosilfosfatidilinositóis , Hepatócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii/metabolismo , Receptor EphA2/metabolismo , Glândulas Salivares/parasitologia , Glândulas Salivares/patologia
5.
Int J Parasitol ; 47(7): 409-423, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27899328

RESUMO

During their life cycle Plasmodium parasites rely upon an arsenal of proteins that establish key interactions with the host and vector, and between the parasite sexual stages, with the purpose of ensuring infection, reproduction and proliferation. Among these is a group of secreted or membrane-anchored proteins known as the six-cysteine (6-cys) family. This is a small but important family with only 14 members thus far identified, each stage-specifically expressed during the parasite life cycle. 6-cys proteins often localise at the parasite surface or interface with the host and vector, and are conserved in different Plasmodium species. The unifying feature of the family is the s48/45 domain, presumably involved in adhesion and structurally related to Ephrins, the ligands of Eph receptors. The most prominent s48/45 members are currently under functional investigation and are being pursued as vaccine candidates. In this review, we examine what is known about the 6-cys family, their structure and function, and discuss future research directions.


Assuntos
Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida , Plasmodium/genética , Proteínas de Protozoários/genética
6.
J Biol Chem ; 288(18): 12805-17, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23511632

RESUMO

Plasmodium falciparum is the most devastating agent of human malaria. A major contributor to its virulence is a complex lifecycle with multiple parasite forms, each presenting a different repertoire of surface antigens. Importantly, members of the 6-Cys s48/45 family of proteins are found on the surface of P. falciparum in every stage, and several of these antigens have been investigated as vaccine targets. Pf12 is the archetypal member of the 6-Cys protein family, containing just two s48/45 domains, whereas other members have up to 14 of these domains. Pf12 is strongly recognized by immune sera from naturally infected patients. Here we show that Pf12 is highly conserved and under purifying selection. Immunofluorescence data reveals a punctate staining pattern with an apical organization in late schizonts. Together, these data are consistent with an important functional role for Pf12 in parasite-host cell attachment or invasion. To infer the structural and functional diversity between Pf12 and the other 11 6-Cys domain proteins, we solved the 1.90 Å resolution crystal structure of the Pf12 ectodomain. Structural analysis reveals a unique organization between the membrane proximal and membrane distal domains and clear homology with the SRS-domain containing proteins of Toxoplasma gondii. Cross-linking and mass spectrometry confirm the previously identified Pf12-Pf41 heterodimeric complex, and analysis of individual cross-links supports an unexpected antiparallel organization. Collectively, the localization and structure of Pf12 and details of its interaction with Pf41 reveal important insight into the structural and functional properties of this archetypal member of the 6-Cys protein family.


Assuntos
Antígenos de Protozoários/química , Plasmodium falciparum/química , Esquizontes/química , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Humanos , Plasmodium falciparum/genética , Estrutura Terciária de Proteína , Esquizontes/imunologia
7.
Proc Natl Acad Sci U S A ; 109(17): 6692-7, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493233

RESUMO

The s48/45 domain was first noted in Plasmodium proteins more than 15 y ago. Previously believed to be unique to Plasmodium, the s48/45 domain is present in other aconoidasidans. In Plasmodium, members of the s48/45 family of proteins are localized on the surface of the parasite in different stages, mostly by glycosylphosphatydylinositol-anchoring. Members such as P52 and P36 seem to play a role in invasion of hepatocytes, and Pfs230 and Pfs48/45 are involved in fertilization in the sexual stages and have been consistently studied as targets of transmission-blocking vaccines for years. In this report, we present the molecular structure for the s48/45 domain corresponding to the C-terminal domain of the blood-stage protein Pf12 from Plasmodium falciparum, obtained by NMR. Our results indicate that this domain is a ß-sandwich formed by two sheets with a mixture of parallel and antiparallel strands. Of the six conserved cysteines, two pairs link the ß-sheets by two disulfide bonds, and the third pair forms a bond outside the core. The structure of the s48/45 domain conforms well to the previously defined surface antigen 1 (SAG1)-related-sequence (SRS) fold observed in the SAG family of surface antigens found in Toxoplasma gondii. Despite extreme sequence divergence, remarkable spatial conservation of one of the disulfide bonds is observed, supporting the hypothesis that the domains have evolved from a common ancestor. Furthermore, a homologous domain is present in ephrins, raising the possibility that the precursor of the s48/45 and SRS domains emerged from an ancient transfer to Apicomplexa from metazoan hosts.


Assuntos
Cisteína/química , Plasmodium falciparum/química , Animais , Ressonância Magnética Nuclear Biomolecular , Proteínas de Protozoários/química
8.
J Biol Chem ; 284(36): 23972-9, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19581640

RESUMO

The bacterial protein-disulfide isomerase DsbC is a homodimeric V-shaped enzyme that consists of a dimerization domain, two alpha-helical linkers, and two opposing thioredoxin fold catalytic domains. The functional significance of the two catalytic domains of DsbC is not well understood yet. We have engineered heterodimer-like DsbC derivatives covalently linked via (Gly(3)-Ser) flexible linkers. We either inactivated one of the catalytic sites (CGYC), or entirely removed one of the catalytic domains while maintaining the putative binding area intact. Variants having a single active catalytic site display significant levels of isomerase activity. Furthermore, mDsbC[H45D]-dim[D53H], a DsbC variant lacking an entire catalytic domain but with an intact dimerization domain, also showed isomerase activity, albeit at lower levels. In addition, the absence of the catalytic domain allowed this protein to catalyze in vivo oxidation. Our results reveal that two catalytic domains in DsbC are not essential for disulfide bond isomerization and that a determining feature in isomerization is the availability of a substrate binding domain.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Isomerases de Dissulfetos de Proteínas/química , Multimerização Proteica , Catálise , Proteínas de Escherichia coli/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA