Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(6): 1470-1475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38240713

RESUMO

Persimmon is a relatively new crop to California agriculture. Asian persimmons (Diospyros kaki) are the dominant species commercially cultivated in the United States, primarily grown in California, covering approximately 1,153 ha of bearing trees. In the growing seasons of 2020 and 2021, unusual shoot blight and branch cankers were observed in several persimmon orchards in San Joaquin and Solano counties in California. The most prevalent symptoms were well-defined black discoloration in the cambium and streaking in the vascular tissues of green shoots. On woody branches and old pruning wounds, symptoms manifested as black wedge-shaped cankers. Isolations from affected tissues revealed the occurrence of Diaporthe species, including D. chamaeropis, D. foeniculina, and an undescribed Diaporthe sp. as the most frequent isolated pathogens, followed by Eutypella citricola and Phaeoacremonium iranianum. The isolates were identified through multilocus phylogenetic analyses using nucleotide sequences of the rDNA internal transcribed spacer, ß-tubulin, and translation elongation factor 1-alpha genes. To fulfill Koch's postulates, mycelium plugs of the various fungal species identified were inserted in 2-year-old branches of mature persimmon trees after making wounds using a corkborer in field conditions. Results showed that Diaporthe spp., E. citricola, and P. iranianum are the main causal agents of branch canker and shoot dieback of persimmon trees in California, with Diaporthe spp. being the most frequently isolated pathogen.


Assuntos
Diospyros , Filogenia , Doenças das Plantas , Diospyros/microbiologia , Doenças das Plantas/microbiologia , California , Ascomicetos/fisiologia , Ascomicetos/genética , Brotos de Planta/microbiologia , DNA Fúngico/genética
2.
Plant Dis ; : PDIS06231137RE, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37845185

RESUMO

Fungal taxonomy is in constant flux, and the advent of reliable DNA barcodes has enabled the enhancement of plant pathogen identification accuracy. In California, Aspergillus vine canker (AVC) and summer bunch rot (SBR) are economically important diseases that affect the wood and fruit of grapevines, respectively, and their causal agents are primarily species of black aspergilli (Aspergillus section Nigri). During the last decade, the taxonomy of this fungal group has been rearranged several times using morphological, physiological, and genetic analyses, which resulted in the incorporation of multiple cryptic species that are difficult to distinguish. Therefore, in this study, we aimed to reassess the etiology of AVC and SBR using a combination of morphological observations with phylogenetic reconstructions based on nucleotide sequences of the calmodulin (CaM) gene. Results revealed that the isolates causing AVC from recent isolations corresponded to A. tubingensis, whereas the isolates obtained from initial surveys when the disease was discovered were confirmed as A. niger and A. carbonarius. Similarly, the isolates obtained from table grapes with SBR symptoms and from spore traps placed in those vineyards were identified primarily as A. tubingensis, followed by A. niger and A. carbonarius. Notably, the A. niger isolates formed a subclade with strains previously known as A. welwitschiae, which is a species that was recently synonymized with A. niger. Overall, the most prevalent species was A. tubingensis, which was associated with both AVC and SBR, and representative isolates recovered from AVC-symptomatic wood, berries SBR symptoms, and spore traps were equally pathogenic in healthy wood and berries of 'Red Globe' grapevines. This study also constitutes the first report of A. tubingensis causing AVC and SBR of grapes in California and in the United States.

3.
Plant Dis ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724096

RESUMO

Pinus eldarica, P. halepensis and P. radiata are important conifer species native to Mediterranean regions that are cultivated in the southwestern United States for landscaping (Phillips and Gladfelter, 1991; Chambel et al., 2013). Among them, Monterey pine (P. radiata) is native to restricted areas of California and Mexico, but it is extensively grown for timber production in other countries, especially in the Southern Hemisphere (Rogers, 2004). From 2018 to 2022, severe dieback and cankers have been detected on more than 30 mature pines of the three species within a 40-ha urban forest in Orange County, Southern California. Symptoms initiate on the lower portion of the canopy and advance into the crown, leading to quick dieback and, in some cases, to tree death. Cross sections of affected branches revealed wedged cankers with irregular, indistinct margins, and cryptic discoloration (i.e., "ghost cankers"). Pycnidia were observed on the surface of each bark scale of branches with advanced infections. Two morphotypes of Botryosphaeriaceae colonies (n = 34 isolates) were recovered consistently from more than 90% of the symptomatic pines. Two isolates per morphotype were grown on pistachio leaf agar (Chen et al., 2014) for 14 days to induce pycnidia formation. Conidia (n = 50) were hyaline, thin-walled and fusoid to ellipsoidal in shape, ranging from 16.1 to 27.9 (22.6) × 5.4 to 8.2 (6.8) µm for the first morphotype and 11.5 to 20.4 (16.3) × 4.8 to 8.6 (6.3) µm for the second morphotype. The rDNA internal transcribed spacer (ITS), beta-tubulin (tub2), and translation elongation factor 1-alpha (tef1-α) partial gene regions were amplified and sequenced using the primers ITS5/ITS4 (White et al., 1990), Bt2a/Bt2b (Glass and Donaldson, 1995), and EF1-728F/EF1-986R (Carbone and Kohn, 1999), respectively. A multi-locus phylogenetic analysis revealed that isolates UCD9433 and UCD10439 clustered with the ex-type strain of Neofusicoccum mediterraneum (CBS:113083), and isolates UCD9161 and UCD9434 grouped with N. parvum (CMW:9081). Sequences were submitted to GenBank (nos. OP535391 to OP535394 for ITS, OP561946 to OP561949 for tef1-α, and OP561950 to OP561953 for tub2). Pathogenicity tests were performed with above-mentioned isolates on 20-mm-diameter healthy branches of mature Monterey pines (n = 10, 14 years old) located in a research field at UC Davis. Isolates were grown for 7 days on potato dextrose agar and inoculated in the internode area by removing a 5-mm-diameter disk of the bark with a sterile cork borer and placing a 5-mm-diameter mycelial plug. Controls were mock-inoculated with sterile agar plugs, and the experiment was performed twice. After three months, inoculations resulted in vascular lesions that ranged from 20.6 to 49.7 (32.7) mm with N. mediterraneum and from 13.5 to 71.0 (33.6) mm with N. parvum, and the same pathogens were reisolated (70 to 100% recovery). Controls remained symptomless and no botryosphaeriaceous colonies were recovered. Both N. mediterraneum and N. parvum are polyphagous pathogens associated with multiple woody plant hosts (Phillips et al., 2013). Previously, only N. parvum has been associated with pine cankers in Iran, however, the pine species was not indicated (Abdollahzadeh et al., 2013). The detection of these pathogens in urban forests raises concerns of potential spillover events to other forest and agricultural hosts in Southern California. To our knowledge, this is the first report of N. mediterraneum and N. parvum causing Pine Ghost Canker on P. eldarica, P. halepensis and P. radiata.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA