Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Microbiome ; 12(1): 60, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515179

RESUMO

BACKGROUND: The gut microbiota is recognized as a regulator of brain development and behavioral outcomes during childhood. Nonetheless, associations between the gut microbiota and behavior are often inconsistent among studies in humans, perhaps because many host-microbe relationships vary widely between individuals. This study aims to stratify children based on their gut microbiota composition (i.e., clusters) and to identify novel gut microbiome cluster-specific associations between the stool metabolomic pathways and child behavioral outcomes. METHODS: Stool samples were collected from a community sample of 248 typically developing children (3-5 years). The gut microbiota was analyzed using 16S sequencing while LC-MS/MS was used for untargeted metabolomics. Parent-reported behavioral outcomes (i.e., Adaptive Skills, Internalizing, Externalizing, Behavioral Symptoms, Developmental Social Disorders) were assessed using the Behavior Assessment System for Children (BASC-2). Children were grouped based on their gut microbiota composition using the Dirichlet multinomial method, after which differences in the metabolome and behavioral outcomes were investigated. RESULTS: Four different gut microbiota clusters were identified, where the cluster enriched in both Bacteroides and Bifidobacterium (Ba2) had the most distinct stool metabolome. The cluster characterized by high Bifidobacterium abundance (Bif), as well as cluster Ba2, were associated with lower Adaptive Skill scores and its subcomponent Social Skills. Cluster Ba2 also had significantly lower stool histidine to urocanate turnover, which in turn was associated with lower Social Skill scores in a cluster-dependent manner. Finally, cluster Ba2 had increased levels of compounds involved in Galactose metabolism (i.e., stachyose, raffinose, alpha-D-glucose), where alpha-D-glucose was associated with the Adaptive Skill subcomponent Daily Living scores (i.e., ability to perform basic everyday tasks) in a cluster-dependent manner. CONCLUSIONS: These data show novel associations between the gut microbiota, its metabolites, and behavioral outcomes in typically developing preschool-aged children. Our results support the concept that cluster-based groupings could be used to develop more personalized interventions to support child behavioral outcomes. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Pré-Escolar , Humanos , Bifidobacterium/genética , Cromatografia Líquida , Microbioma Gastrointestinal/genética , Glucose , Metaboloma , Metabolômica/métodos , RNA Ribossômico 16S , Espectrometria de Massas em Tandem
2.
Microbiome ; 12(1): 22, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326891

RESUMO

BACKGROUND: The gut microbiome undergoes primary ecological succession over the course of early life before achieving ecosystem stability around 3 years of age. These maturational patterns have been well-characterized for bacteria, but limited descriptions exist for other microbiota members, such as fungi. Further, our current understanding of the prevalence of different patterns of bacterial and fungal microbiome maturation and how inter-kingdom dynamics influence early-life microbiome establishment is limited. RESULTS: We examined individual shifts in bacterial and fungal alpha diversity from 3 to 12 months of age in 100 infants from the CHILD Cohort Study. We identified divergent patterns of gut bacterial or fungal microbiome maturation in over 40% of infants, which were characterized by differences in community composition, inter-kingdom dynamics, and microbe-derived metabolites in urine, suggestive of alterations in the timing of ecosystem transitions. Known microbiome-modifying factors, such as formula feeding and delivery by C-section, were associated with atypical bacterial, but not fungal, microbiome maturation patterns. Instead, fungal microbiome maturation was influenced by prenatal exposure to artificially sweetened beverages and the bacterial microbiome, emphasizing the importance of inter-kingdom dynamics in early-life colonization patterns. CONCLUSIONS: These findings highlight the ecological and environmental factors underlying atypical patterns of microbiome maturation in infants, and the need to incorporate multi-kingdom and individual-level perspectives in microbiome research to improve our understandings of gut microbiome maturation patterns in early life and how they relate to host health. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Micobioma , Humanos , Lactente , Estudos de Coortes , Edulcorantes , Bactérias/genética
3.
J Allergy Clin Immunol ; 152(6): 1368-1375, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865199

RESUMO

Atopic diseases are characterized by type 2 inflammation, with high levels of allergen-specific TH2 cell immune responses and elevated production of IgE. These common disorders have increased in incidence around the world, which is partly explained by detrimental disturbances to the early-life intestinal microbiome. Although most studies have focused exclusively on bacterial members of the microbiome, intestinal fungi have started to be recognized for their impact on host immune development and atopy pathogenesis. From this perspective, we review recent findings demonstrating the strong interactions between members of the mycobiome and the host immune system early in life, leading to immune tolerance during eubiosis or inducing sensitization and overt TH2 cell responses during dysbiosis. Current evidence places intestinal fungi as central players in the development of allergic diseases and potential targets for atopy prevention and treatments.


Assuntos
Hipersensibilidade Imediata , Hipersensibilidade , Micobioma , Humanos , Hipersensibilidade Imediata/epidemiologia , Alérgenos , Inflamação , Fungos
4.
Psychoneuroendocrinology ; 158: 106380, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696229

RESUMO

OBJECTIVE: Stress is common among pregnant individuals and is associated with an altered gut microbiota composition in infants. It is unknown if these compositional changes persist into the preschool years when the gut microbiota reaches an adult-like composition. This study aimed to investigate if indicators of prenatal stress (i.e., psychological distress and stress-related physiology) are associated with children's gut microbiota composition and metabolites at 3-4 years of age. METHODS: Maternal-child pairs (n = 131) were from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. Each trimester, psychological distress was measured as symptoms of anxiety (Symptom Checklist-90-R) and depressed mood (Edinburgh Postnatal Depression Scale), whereas salivary cortisol was quantified as a measure of stress-related physiology. Child stool samples were collected at 3-4 years to evaluate gut microbiota composition using 16S rRNA gene sequencing and fecal metabolome using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Associations between prenatal distress and cortisol with the gut microbiota were determined using Pearson and Spearman correlations and corrected for multiple testing. Associations between prenatal distress and cortisol with the fecal metabolome were assessed using Metaboanalyst. RESULTS: Symptoms of depressed mood during the 2nd and 3rd trimesters and anxiety during the 2nd trimester of pregnancy were associated with increased alpha diversity of the child's gut microbiota. Cortisol levels during the 1st trimester were also associated with increased Faith PD diversity (r = 0.32), whereas cortisol levels during the 2nd trimester were associated with reduced Shannon diversity (r = -0.27). Depression scores during the 2nd and 3rd trimesters were associated with reductions in the relative abundances of Eggerthella, Parasutterella, and increases in Ruminococcaceae (rs = -0.28, rs = -0.32, rs = 0.32, respectively), as well as the fecal metabolome (e.g., branched-chain amino acid metabolism). Cortisol levels during the 2nd trimester correlated with 7 bacterial taxa, whereas 1st-trimester cortisol levels were associated with the child's fecal metabolome. CONCLUSIONS: Prenatal distress and cortisol were associated with both child gut microbiota composition and fecal metabolome at preschool age. Understanding these associations may allow for the identification of microbiota-targeted interventions to support child developmental outcomes affected by prenatal stress.


Assuntos
Depressão , Microbioma Gastrointestinal , Feminino , Gravidez , Adulto , Lactente , Humanos , Pré-Escolar , Depressão/metabolismo , Hidrocortisona/análise , Cromatografia Líquida , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S , Espectrometria de Massas em Tandem
5.
Trends Mol Med ; 29(10): 789-801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516570

RESUMO

A growing number of human gut microbiome studies consistently describe differences between human populations. Here, we review how factors related to host genetics, ethnicity, lifestyle, and geographic location help explain this variation. Studies from contrasting environmental scenarios point to diet and lifestyle as the most influential. The effect of human migration and displacement demonstrates how the microbiome adapts to newly adopted lifestyles and contributes to the profound biological and health consequences attributed to migration. This information strongly suggests against a universal scale for healthy or dysbiotic gut microbiomes, and prompts for additional microbiome population surveys, particularly from less industrialized nations. Considering these important differences will be critical for designing strategies to diagnose and restore dysbiosis in various human populations.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Bactérias , Dieta , Estilo de Vida
6.
Neurosci Lett ; 810: 137357, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37355156

RESUMO

The relationship between the gut microbiota and neurocognitive outcomes is becoming increasingly recognized; however, findings in humans are inconsistent. In addition, few studies have investigated the gut microbial metabolites that may mediate this relationship. The objective of this study was to investigate associations between full-scale intelligence (FSIQ) and the composition of the gut microbiota and metabolome in preschool children. Stool samples were collected from a community sample of 245 typically developing children (3-5 years) from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. The faecal microbiome was assessed using 16S rRNA sequencing and the metabolome using LC-MS/MS. FSIQ and scores on the Verbal Comprehension, Visual Spatial, Working Memory indices of the Wechsler Preschool and Primary Scale of Intelligence-IV were used to assess neurocognition. Associations between the gut microbiota and FSIQ were determined using Pearson and Spearman correlations, which were corrected for multiple testing and relevant covariates. Verbal Comprehension correlated negatively with both Shannon alpha diversity (r = -0.14, p = 0.032) and the caffeine-derived metabolite paraxanthine (r = -0.22, p < 0.001). No other significant correlations were observed. Overall, the weak to modest correlations between Verbal Comprehension with alpha diversity and paraxanthine provide limited evidence of an association between the gut microbiota and neurocognitive outcomes in typically developing preschool children.


Assuntos
Microbioma Gastrointestinal , Humanos , Pré-Escolar , RNA Ribossômico 16S , Cromatografia Líquida , Espectrometria de Massas em Tandem , Inteligência
7.
Open Forum Infect Dis ; 10(5): ofad195, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180590

RESUMO

Interactions between the microbiome and medical therapies are distinct and bidirectional. The existing term "pharmacomicrobiomics" describes the effects of the microbiome on drug distribution, metabolism, efficacy, and toxicity. We propose that the term "pharmacoecology" be used to describe the effects that drugs and other medical interventions such as probiotics have on microbiome composition and function. We suggest that the terms are complementary but distinct and that both are potentially important when assessing drug safety and efficacy as well as drug-microbiome interactions. As a proof of principle, we describe the ways in which these concepts apply to antimicrobial and non-antimicrobial medications.

8.
Gut Microbes ; 15(1): 2201160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122152

RESUMO

Gut microbiome maturation in infants born prematurely is uniquely influenced by the physiological, clinical, and environmental factors surrounding preterm birth and early life, leading to altered patterns of microbial succession relative to term infants during the first months of life. These differences in microbiome composition are implicated in acute clinical conditions that disproportionately affect preterm infants, including necrotizing enterocolitis (NEC) and late-onset sepsis (LOS). Probiotic supplementation initiated early in life is an effective prophylactic measure for preventing NEC, LOS, and other clinical concerns relevant to preterm infants. In parallel, reported benefits of probiotics on the preterm gut microbiome, metabolome, and immune function are beginning to emerge. This review summarizes the current literature on the influence of probiotics on the gut microbiome of preterm infants, outlines potential mechanisms by which these effects are exerted, and highlights important clinical considerations for determining the best practices for probiotic use in premature infants.


Assuntos
Enterocolite Necrosante , Microbioma Gastrointestinal , Nascimento Prematuro , Probióticos , Sepse , Lactente , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Probióticos/uso terapêutico , Enterocolite Necrosante/prevenção & controle
9.
Cell Rep Med ; 4(2): 100928, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36736319

RESUMO

Unlike the bacterial microbiome, the role of early-life gut fungi in host metabolism and childhood obesity development remains poorly characterized. To address this, we investigate the relationship between the gut mycobiome of 100 infants from the Canadian Healthy Infant Longitudinal Development (CHILD) Cohort Study and body mass index Z scores (BMIz) in the first 5 years of life. An increase in fungal richness during the first year of life is linked to parental and infant BMI. The relationship between richness pattern and early-life BMIz is modified by maternal BMI, maternal diet, infant antibiotic exposure, and bacterial beta diversity. Further, the abundances of Saccharomyces, Rhodotorula, and Malassezia are differentially associated with early-life BMIz. Using structural equation modeling, we determine that the mycobiome's contribution to BMIz is likely mediated by the bacterial microbiome. This demonstrates that mycobiome maturation and infant growth trajectories are distinctly linked, advocating for inclusion of fungi in larger pediatric microbiome studies.


Assuntos
Microbioma Gastrointestinal , Micobioma , Obesidade Infantil , Humanos , Lactente , Criança , Índice de Massa Corporal , Estudos de Coortes , Canadá
10.
Nature ; 613(7945): 639-649, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697862

RESUMO

Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.


Assuntos
Biomassa , Contaminação por DNA , Feto , Microbiota , Animais , Feminino , Humanos , Gravidez , Líquido Amniótico/imunologia , Líquido Amniótico/microbiologia , Mamíferos , Microbiota/genética , Placenta/imunologia , Placenta/microbiologia , Feto/imunologia , Feto/microbiologia , Reprodutibilidade dos Testes
11.
Mucosal Immunol ; 15(6): 1060-1070, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35869146

RESUMO

A priori power and sample size calculations are crucial to appropriately test null hypotheses and obtain valid conclusions from all clinical studies. Statistical tests to evaluate hypotheses in microbiome studies need to consider intrinsic features of microbiome datasets that do not apply to classic sample size calculation. In this review, we summarize statistical approaches to calculate sample sizes for typical microbiome study scenarios, including those that hypothesize microbiome features to be the outcome, the exposure or the mediator, and provide relevant R scripts to conduct some of these calculations. This review is intended to be a resource to facilitate the conduct of sample size calculations that are based on testable hypotheses across several dimensions of the microbiome. Implementation of these methods will improve the quality of human or animal microbiome studies, enabling reliable conclusions that will generalize beyond the study sample.


Assuntos
Microbiota , Animais , Humanos , Tamanho da Amostra
13.
Cell Host Microbe ; 30(5): 696-711.e5, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35550672

RESUMO

Probiotics are increasingly administered to premature infants to prevent necrotizing enterocolitis and neonatal sepsis. However, their effects on gut microbiome assembly and immunity are poorly understood. Using a randomized intervention trial in extremely premature infants, we tested the effects of a probiotic product containing four strains of Bifidobacterium species autochthonous to the infant gut and one Lacticaseibacillus strain on the compositional and functional trajectory of microbiome. Daily administration of the mixture accelerated the transition into a mature, term-like microbiome with higher stability and species interconnectivity. Besides infant age, Bifidobacterium strains and stool metabolites were the best predictors of microbiome maturation, and structural equation modeling confirmed probiotics as a major determinant for the trajectory of microbiome assembly. Bifidobacterium-driven microbiome maturation was also linked to an anti-inflammatory intestinal immune milieu. This demonstrates that Bifidobacterium strains are ecosystem engineers that lead to an acceleration of microbiome maturation and immunological consequences in extremely premature infants.


Assuntos
Microbioma Gastrointestinal , Probióticos , Bifidobacterium , Ecossistema , Humanos , Lactente , Lactente Extremamente Prematuro , Recém-Nascido , Inflamação
14.
Mucosal Immunol ; 15(4): 573-583, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474360

RESUMO

Fungi are important yet understudied contributors to the microbial communities of the gastrointestinal tract. Starting at birth, the intestinal mycobiome undergoes a period of dynamic maturation under the influence of microbial, host, and extrinsic influences, with profound functional implications for immune development in early life, and regulation of immune homeostasis throughout life. Candida albicans serves as a model organism for understanding the cross-talk between fungal colonization dynamics and immunity, and exemplifies unique mechanisms of fungal-immune interactions, including fungal dimorphism, though our understanding of other intestinal fungi is growing. Given the prominent role of the gut mycobiome in promoting immune homeostasis, emerging evidence points to fungal dysbiosis as an influential contributor to immune dysregulation in a variety of inflammatory and infectious diseases. Here we review current knowledge on the factors that govern host-fungi interactions in the intestinal tract and immunological outcomes in both mucosal and systemic compartments.


Assuntos
Microbiota , Micobioma , Candida albicans , Disbiose/microbiologia , Fungos/fisiologia , Trato Gastrointestinal/microbiologia , Humanos , Imunidade nas Mucosas , Recém-Nascido , Micobioma/fisiologia
15.
Pediatr Res ; 92(6): 1663-1670, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35314794

RESUMO

BACKGROUND: Effects of probiotics on intestinal microbiota and feeding tolerance remain unclear in extremely low-birth-weight (ELBW) infants. METHODS: ELBW infants were randomly assigned to receive probiotics or no intervention. Stool samples were collected prior to, 2 and 4 weeks after initiation, and 2 weeks after probiotics cessation for infants in the probiotics group, and at matched postnatal age time points for infants in the control group. RESULTS: Of the 102 infants assessed for eligibility, sixty-two were included. Infants who received probiotics reached full enteral feeds sooner (Mean difference (MD) -1.8; 95% CI:-3.7 to -0.01 day), had a tendency toward lower incidence of hematochezia before hospital discharge (22.6% vs 3.2%; P = 0.053), and were less likely to require extensively hydrolyzed- or amino acids-based formulas to alleviate signs of cow's milk protein intolerance in the first 6 months of life (19.4% vs 51.6%; P = 0.008). Infants on probiotics were more likely to receive wide-spectrum antibiotics (64.5% vs 32.2%; P = 0.01). Multi-strain probiotics resulted in significant increase in fecal Bifidobacterium (P < 0.001) and Lactobacillus (P = 0.005), and marked reduction in fecal candida abundance (P = 0.04). CONCLUSION: Probiotics sustained intestinal Bifidobacterium and reduced time to achieve full enteral feeds in extremely preterm infants. Probiotics might improve tolerance for cow's milk protein supplements. CLINICAL TRIAL REGISTRATION: This trial has been registered at www. CLINICALTRIALS: gov (identifier NCT03422562). IMPACT: Probiotics may help extremely preterm infants achieve full enteral feeds sooner. Probiotics may improve tolerance for cow's milk protein supplements. Multi-strain probiotics can sustain intestinal Bifidobacterium and Lactobacillus until hospital discharge.


Assuntos
Lactente Extremamente Prematuro , Probióticos , Recém-Nascido , Humanos , Feminino , Animais , Bovinos , Suplementos Nutricionais , Probióticos/uso terapêutico , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Proteínas do Leite
16.
Trends Microbiol ; 30(8): 710-721, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35190251

RESUMO

There is a growing interest to understand if and how the gut microbiome is causally linked to the pathogenesis and/or progression of diseases. While in vitro cell line models are commonly used for studying specific aspects of the host-microbe interaction, gnotobiotic murine models are considered the preferred platform for studying causality in microbiome research. Nevertheless, findings from animal studies provide limited opportunity for delineating various areas of interest to the human gut microbiome research. Gut-on-chips are biomimetics recapitulating intestinal physiology which enable investigation of bidirectional effects of the host and microbiome. We posit that they could advance causal and ecological gut microbiome research in three major areas: (i) diet-microbiome and drug-microbiome interaction; (ii) microbiome-targeted therapeutics pharmacoecology; and (iii) mechanistic studies of gut microbiome and microbiome-targeted intervention in extraintestinal pathologies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Dieta , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Camundongos
17.
Anim Microbiome ; 4(1): 14, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193703

RESUMO

BACKGROUND: Eukaryotic microbes can modulate mammalian host health and disease states, yet the molecular contribution of gut fungi remains nascent. We previously showed that mice exclusively colonised with fungi displayed increased sensitivity to allergic airway inflammation and had fecal metabolite profiles similar to germ-free mice. This marginal effect on the host metabolome suggested that fungi do not primarily use metabolites to modulate the host immune system. METHODS: To describe functional changes attributed to fungal colonisation, we performed mass spectrometry-based analyses of feces (Label-Free Quantitative; LFQ) and the small intestine (labeling with Tandem Mass Tag; TMT) of gnotobiotic mice colonised with defined consortia of twelve bacterial species, five fungal species, or both. We also evaluated the effect of microbiome perturbances on the metaproteome by analysing feces from mouse pups treated with an antibiotic or antifungal. RESULTS: We detected 6675 proteins in the mice feces, of which 3845 had determined LFQ levels. Analysis of variance showed changes in the different gnotobiotic mouse groups; specifically, 46% of 2860 bacterial, 15% of 580 fungal, and 76% of 405 mouse quantified proteins displayed differential levels. The antimicrobial treatments resulted in lasting changes in the bacterial and fungal proteomes, suggesting that the antimicrobials impacted the entire community. Fungal colonisation resulted in changes in host proteins functional in innate immunity as well as metabolism, predicting specific roles of gut fungi on host systems during early developmental stages. Several of the detected fungal proteins (3% of 1492) have been previously reported as part of extracellular vesicles and having immunomodulating properties. Using an isobaric labelling TMT approach for profiling low abundant proteins of the jejunal tissue, we confirmed that the five fungal species differentially impacted the host intestinal proteome compared to the bacterial consortium. The detected changes in mouse jejunal proteins (4% of 1514) were mainly driven by metabolic proteins. CONCLUSIONS: We used quantitative proteomic profiling of gnotobiotic conditions to show how colonisation with selected fungal species impacts the host gut proteome. Our results suggest that an increased abundance of certain gut fungal species in early life may affect the developing intracellular attributes of epithelial and immune cells.

18.
Comput Struct Biotechnol J ; 20: 274-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35024099

RESUMO

Humans have a long-standing coexistence with microorganisms. In particular, the microbial community that populates the human gastrointestinal tract has emerged as a critical player in governing human health and disease. DNA and RNA sequencing techniques that map taxonomical composition and genomic potential of the gut community have become invaluable for microbiome research. However, deriving a biochemical understanding of how activities of the gut microbiome shape host development and physiology requires an expanded experimental design that goes beyond these approaches. In this review, we explore advances in high-throughput techniques based on liquid chromatography-mass spectrometry. These omics methods for the identification of proteins and metabolites have enabled direct characterisation of gut microbiome functions and the crosstalk with the host. We discuss current metaproteomics and metabolomics workflows for producing functional profiles, the existing methodological challenges and limitations, and recent studies utilising these techniques with a special focus on early life gut microbiome.

19.
mSphere ; 6(4): e0008321, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34406855

RESUMO

An estimated 3.5 billion people are colonized by intestinal parasites worldwide. Intestinal parasitic eukaryotes interact not only with the host but also with the intestinal microbiota. In this work, we studied the relationship between the presence of multiple enteric parasites and the community structures of gut bacteria and eukaryotes in an asymptomatic mother-child cohort from a semirural community in Mexico. Fecal samples were collected from 46 mothers and their respective children, with ages ranging from 2 to 20 months. Mothers and infants were found to be multiparasitized by Blastocystis hominis, Entamoeba dispar, Endolimax nana, Chilomastix mesnili, Iodamoeba butshlii, Entamoeba coli, Hymenolepis nana, and Ascaris lumbricoides. Sequencing of bacterial 16S rRNA and eukaryotic 18S rRNA genes showed a significant effect of parasite exposure on bacterial beta-diversity, which explained between 5.2% and 15.0% of the variation of the bacterial community structure in the cohort. Additionally, exposure to parasites was associated with significant changes in the relative abundances of multiple bacterial taxa, characterized by an increase in Clostridiales and decreases in Actinobacteria and Bacteroidales. Parasite exposure was not associated with changes in intestinal eukaryote relative abundances. However, we found several significant positive correlations between intestinal bacteria and eukaryotes, including Oscillospira with Entamoeba coli and Prevotella stercorea with Entamoeba hartmanni, as well as the co-occurrence of the fungus Candida with Bacteroides and Actinomyces, Bifidobacterium, and Prevotella copri and the fungus Pichia with Oscillospira. The parasitic exposure-associated changes in the bacterial community structure suggest effects on microbial metabolic routes, host nutrient uptake abilities, and intestinal immunity regulation in host-parasite interactions. IMPORTANCE The impact of intestinal eukaryotes on the prokaryotic microbiome composition of asymptomatic carriers has not been extensively explored, especially in infants and mothers with multiple parasitic infections. In this work, we studied the relationship between protist and helminth parasite colonization and the intestinal microbiota structure in an asymptomatic population of mother-child binomials from a semirural community in Mexico. We found that the presence of parasitic eukaryotes correlated with changes in the bacterial gut community structure in the intestinal microbiota in an age-dependent way. Parasitic infection was associated with an increase in the relative abundance of the class Clostridia and decreases of Actinobacteria and Bacteroidia. Parasitic infection was not associated with changes in the eukaryote community structure. However, we observed strong positive correlations between bacterial and other eukaryote taxa, identifying novel relationships between prokaryotes and fungi reflecting interkingdom interactions within the human intestine.


Assuntos
Bactérias/genética , Fezes/parasitologia , Microbioma Gastrointestinal/genética , Helmintos/fisiologia , Enteropatias Parasitárias/epidemiologia , Parasitos/fisiologia , Adolescente , Adulto , Animais , Bactérias/classificação , Estudos de Coortes , Feminino , Microbioma Gastrointestinal/fisiologia , Helmintos/genética , Interações Hospedeiro-Parasita , Humanos , Lactente , México/epidemiologia , Pessoa de Meia-Idade , Modelos Estatísticos , Mães , Parasitos/classificação , Parasitos/genética , RNA Ribossômico 16S/genética , População Rural/estatística & dados numéricos , Adulto Jovem
20.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161260

RESUMO

Individuals who are minoritized as a result of race, sexual identity, gender, or socioeconomic status experience a higher prevalence of many diseases. Understanding the biological processes that cause and maintain these socially driven health inequities is essential for addressing them. The gut microbiome is strongly shaped by host environments and affects host metabolic, immune, and neuroendocrine functions, making it an important pathway by which differences in experiences caused by social, political, and economic forces could contribute to health inequities. Nevertheless, few studies have directly integrated the gut microbiome into investigations of health inequities. Here, we argue that accounting for host-gut microbe interactions will improve understanding and management of health inequities, and that health policy must begin to consider the microbiome as an important pathway linking environments to population health.


Assuntos
Microbioma Gastrointestinal , Disparidades nos Níveis de Saúde , Doença , Saúde , Humanos , Saúde Mental , Publicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA