Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562694

RESUMO

The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.

2.
mBio ; : e0225423, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877735

RESUMO

Apicomplexan parasites, including Toxoplasma gondii, encode many plant-like proteins, which play significant roles and present attractive targets for drug development. In this study, we have characterized the plant-like protein phosphatase PPKL, which is unique to the parasite and absent in its mammalian host. We have shown that its localization changes as the parasite divides. In non-dividing parasites, it is present in the cytoplasm, nucleus, and preconoidal region. As the parasite begins division, PPKL is enriched in the preconoidal region and the cortical cytoskeleton of nascent parasites. Later in the division, PPKL is present in the basal complex ring. Conditional knockdown of PPKL showed that it is essential for parasite propagation. Moreover, parasites lacking PPKL exhibit uncoupling of division, with normal DNA duplication but severe defects in forming daughter parasites. While PPKL depletion does not impair the duplication of centrosomes, it affects the stability of cortical microtubules. Both co-immunoprecipitation and proximity labeling identified the kinase DYRK1 as a potential functional partner of PPKL. Complete knockout of DYRK1 causes parasites to exhibit division defects with predominantly asynchronous divisions. Global phosphoproteomics analysis revealed a significant increase in phosphorylation of the microtubule-associated protein SPM1 in PPKL-depleted parasites, suggesting that PPKL regulates cortical microtubules by mediating the phosphorylation state of SPM1. More importantly, the phosphorylation of cell cycle-associated kinase Crk1, a known regulator of daughter cell assembly, is altered in PPKL-depleted parasites. Thus, we propose that PPKL regulates daughter parasite development by influencing the Crk1-dependent signaling pathway. IMPORTANCE Toxoplasma gondii can cause severe disease in immunocompromised or immunosuppressed patients and during congenital infections. Treating toxoplasmosis presents enormous challenges since the parasite shares many biological processes with its mammalian hosts, which results in significant side effects with current therapies. Consequently, proteins that are essential and unique to the parasite represent favorable targets for drug development. Interestingly, Toxoplasma, like other members of the phylum Apicomplexa, has numerous plant-like proteins, many of which play crucial roles and do not have equivalents in the mammalian host. In this study, we found that the plant-like protein phosphatase PPKL appears to be a key regulator of daughter parasite development. With the depletion of PPKL, the parasite shows severe defects in forming daughter parasites. This study provides novel insights into the understanding of parasite division and offers a new potential target for the development of antiparasitic drugs.

3.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398039

RESUMO

Apicomplexan parasites, including Toxoplasma gondii, encode many plant-like proteins, which play significant roles and present attractive targets for drug development. In this study, we have characterized the plant-like protein phosphatase PPKL, which is unique to the parasite and absent in its mammalian host. We have shown that its localization changes as the parasite divides. In non-dividing parasites, it is present in the cytoplasm, nucleus, and preconoidal region. As the parasite begins division, PPKL is enriched in the preconoidal region and the cortical cytoskeleton of the nascent parasites. Later in the division, PPKL is present in the basal complex ring. Conditional knockdown of PPKL showed that it is essential for parasite propagation. Moreover, parasites lacking PPKL exhibit uncoupling of division, with normal DNA duplication but severe defects in forming daughter parasites. While PPKL depletion does not impair the duplication of centrosomes, it affects the rigidity and arrangement of the cortical microtubules. Both Co-Immunoprecipitation and proximity labeling identified the kinase DYRK1 as a potential functional partner of PPKL. Complete knockout of DYRK1 phenocopies lack of PPKL, strongly suggesting a functional relationship between these two signaling proteins. Global phosphoproteomics analysis revealed a significant increase in phosphorylation of the microtubule-associated proteins SPM1 in PPKL-depleted parasites, suggesting PPKL regulates the cortical microtubules by mediating the phosphorylation state of SPM1. More importantly, the phosphorylation of cell cycle-associated kinase Crk1, a known regulator of daughter cell assembly, is altered in PPKL-depleted parasites. Thus, we propose that PPKL regulates daughter parasite development by influencing the Crk1-dependent signaling pathway.

4.
mSphere ; 7(6): e0040322, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36468865

RESUMO

Chromatin dynamics can regulate all DNA-dependent processes. Access to DNA within chromatin is orchestrated mainly by histones and their posttranslational modifications (PTMs). Like other eukaryotes, the apicomplexan parasite Toxoplasma gondii encodes four canonical histones and five histone variants. In contrast, the linker histone (H1) has never been identified in apicomplexan parasites. In other eukaryotes, histone H1 compacts the chromatin by linking the nucleosome and increasing the DNA compaction. H1 is a multifunctional protein and can be involved in different steps of DNA metabolism or associated with protein complexes related to distinct biological processes. We have identified a novel protein in T. gondii ("TgH1-like") that, although lacking the globular domain of mammalian H1, is remarkably like the H1-like proteins of bacteria and trypanosomatids. Our results demonstrate that TgH1-like is a nuclear protein associated with chromatin and other histones. Curiously, TgH1-like is also in the nucleolus and associated with ribosomal proteins, indicating a versatile function in this parasite. Although knockout of the tgh1-like gene does not affect the cell cycle, it causes endopolygeny and asynchronous division. Interestingly, mutation of posttranslationally modified amino acids results in defects in cell division like those in the Δtgh1-like mutant, showing that these sites are important for protein function. Furthermore, in the bradyzoite stage, this protein is expressed only in dividing parasites, reinforcing its importance in cell division. Indeed, the absence of TgH1-like decreases compaction of peripheral chromatin, confirming its role in the chromatin modulation in T. gondii. IMPORTANCE Histone H1, or linker histone, is an important protein that binds to the nucleosome, aiding chromatin compaction. Here, we characterize for the first time a linker histone in T. gondii, named TgH1-like. It is a small and basic protein that corresponds only to the C-terminal portion of the human H1 but is similar to histone H1 from trypanosomatids and bacteria. TgH1-like is located in the nucleus, interacts with nucleosome histones, and acts in chromatin structure and cell division. Our findings show for the first time the presence of a histone H1 protein in an apicomplexan parasite and will provide new insights into cell division and chromatin dynamics in T. gondii and related parasites.


Assuntos
Fenômenos Biológicos , Toxoplasma , Animais , Humanos , Histonas/genética , Nucleossomos , Toxoplasma/genética , Toxoplasma/metabolismo , Cromatina , DNA , Divisão Celular , Ribossomos/metabolismo , Mamíferos
5.
PLoS Pathog ; 18(10): e1010901, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36265000

RESUMO

Fundamental processes that govern the lytic cycle of the intracellular parasite Toxoplasma gondii are regulated by several signalling pathways. However, how these pathways are connected remains largely unknown. Here, we compare the phospho-signalling networks during Toxoplasma egress from its host cell by artificially raising cGMP or calcium levels. We show that both egress inducers trigger indistinguishable signalling responses and provide evidence for a positive feedback loop linking calcium and cyclic nucleotide signalling. Using WT and conditional knockout parasites of the non-essential calcium-dependent protein kinase 3 (CDPK3), which display a delay in calcium inonophore-mediated egress, we explore changes in phosphorylation and lipid signalling in sub-minute timecourses after inducing Ca2+ release. These studies indicate that cAMP and lipid metabolism are central to the feedback loop, which is partly dependent on CDPK3 and allows the parasite to respond faster to inducers of egress. Biochemical analysis of 4 phosphodiesterases (PDEs) identified in our phosphoproteomes establishes PDE2 as a cAMP-specific PDE which regulates Ca2+ induced egress in a CDPK3-independent manner. The other PDEs display dual hydrolytic activity and play no role in Ca2+ induced egress. In summary, we uncover a positive feedback loop that enhances signalling during egress, thereby linking several signalling pathways.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Cálcio/metabolismo , Nucleotídeos Cíclicos/metabolismo , Retroalimentação , Lipídeos
6.
J Cell Sci ; 135(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314270

RESUMO

The single mitochondrion of Toxoplasma gondii is highly dynamic, being predominantly in a peripherally distributed lasso-shape in intracellular parasites and collapsed in extracellular parasites. The peripheral positioning of the mitochondrion is associated with apparent contacts between the mitochondrion membrane and the parasite pellicle. The outer mitochondrial membrane-associated protein LMF1 is critical for the correct positioning of the mitochondrion. Intracellular parasites lacking LMF1 fail to form the lasso-shaped mitochondrion. To identify other proteins that tether the mitochondrion of the parasite to the pellicle, we performed a yeast two-hybrid screen for LMF1 interactors. We identified 70 putative interactors localized in different cellular compartments, such as the apical end of the parasite, mitochondrial membrane and the inner membrane complex (IMC), including with the pellicle protein IMC10. Using protein-protein interaction assays, we confirmed the interaction of LMF1 with IMC10. Conditional knockdown of IMC10 does not affect parasite viability but severely affects mitochondrial morphology in intracellular parasites and mitochondrial distribution to the daughter cells during division. In effect, IMC10 knockdown phenocopies disruption of LMF1, suggesting that these two proteins define a novel membrane tether between the mitochondrion and the IMC in Toxoplasma. This article has an associated First Person interview with the first author of the paper.


Assuntos
Parasitos , Toxoplasma , Animais , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
7.
Cells ; 11(10)2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35626745

RESUMO

The propagation of the obligate intracellular parasite Toxoplasma gondii is tightly regulated by calcium signaling. However, the mechanisms by which calcium homeostasis and fluxes are regulated in this human pathogen are not fully understood. To identify Toxoplasma's calcium homeostasis network, we have characterized a novel EF-hand domain-containing protein, which we have named TgEFP1. We have determined that TgEFP1 localizes to a previously described compartment known as the plant-like vacuole or the endosomal-like compartment (PLV/ELC), which harbors several proteins related to ionic regulation. Interestingly, partial permeabilization techniques showed that TgEFP1 is also secreted into the parasitophorous vacuole (PV), within which the parasite divides. Ultrastructure expansion microscopy confirmed the unusual dual localization of TgEFP1 at the PLV/ELC and the PV. Furthermore, we determined that the localization of TgEFP1 to the PV, but not to the PLV/ELC, is affected by disruption of Golgi-dependent transport with Brefeldin A. Knockout of TgEFP1 results in faster propagation in tissue culture, hypersensitivity to calcium ionophore-induced egress, and premature natural egress. Thus, our work has revealed an interplay between the PV and the PLV/ELC and a role for TgEFP1 in the regulation of calcium-dependent events.


Assuntos
Toxoplasma , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Vacúolos/metabolismo
8.
Curr Opin Cell Biol ; 76: 102085, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35569259

RESUMO

Integral membrane protein complexes control key cellular functions in eukaryotes by defining membrane-bound spaces within organelles and mediating inter-organelles contacts. Despite the critical role of membrane complexes in cell biology, most of our knowledge is from a handful of model systems, primarily yeast and mammals, while a full functional and evolutionary understanding remains incomplete without the perspective from a broad range of divergent organisms. Apicomplexan parasites are single-cell eukaryotes whose survival depends on organelle compartmentalisation and communication. Studies of a model apicomplexan, Toxoplasma gondii, reveal unexpected divergence in the composition and function of complexes previously considered broadly conserved, such as the mitochondrial ATP synthase and the tethers mediating ER-mitochondria membrane contact sites. Thus, Toxoplasma joins the repertoire of divergent model eukaryotes whose research completes our understanding of fundamental cell biology.


Assuntos
Toxoplasma , Animais , Eucariotos/metabolismo , Mamíferos/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Organelas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
9.
mSphere ; 7(3): e0005222, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35603560

RESUMO

The pathogenesis of Toxoplasma gondii is mainly due to tissue damage caused by the repeating lytic cycles of the parasite. Many proteins localized to the pellicle of the parasite, particularly kinases, have been identified as critical regulators of the Toxoplasma lytic cycle. However, little is known about the associated protein phosphatases. Phosphatase of regenerating liver (PRL), a highly conserved tyrosine phosphatase, is an oncoprotein that plays pivotal roles in mammalian cells and typically associates with membranes via a conserved prenylation site. PRL in Toxoplasma has a predicted prenylation motif in the C terminus, like other homologs. We have determined that T. gondii PRL (TgPRL) localizes to the plasma membrane and that disruption of TgPRL results in a defect in the parasite's ability to attach to host cells. This function is dependent on both TgPRL's membrane localization and phosphatase activity. Importantly, in vivo experiments have shown that while mice infected with parental strain parasites die within days of infection, those infected with parasites lacking TgPRL not only survive but also develop immunity that confers protection against subsequent infection with wild-type parasites. Immunoprecipitation experiments revealed that the PRL-CNNM (cyclin M) complex, which regulates intracellular Mg2+ homeostasis in mammalian cells, is also present in Toxoplasma. Consistent with this interaction, parasites lacking TgPRL had higher intracellular Mg2+ levels than the parental or complemented strains, suggesting TgPRL is involved in regulating intracellular Mg2+ homeostasis. Thus, TgPRL is a vital regulator of the Toxoplasma lytic cycle and virulence, showing its potential as a target of therapeutic intervention. IMPORTANCE Infection with Toxoplasma gondii can lead to severe and even life-threatening diseases in people with compromised or suppressed immune systems. Unfortunately, drugs to combat the parasite are limited, highly toxic, and ineffective against the chronic stage of the parasite. Consequently, there is a strong demand for the discovery of new treatments. A comprehensive understanding of how the parasite propagates in the host cells and which proteins contribute to the parasite's virulence will facilitate the discovery of new drug targets. Our study meets this objective and adds new insights to understanding the lytic cycle regulation and virulence of Toxoplasma by determining that the protein phosphatase TgPRL plays a vital role in the parasite's ability to attach to host cells and that it is essential for parasite virulence.


Assuntos
Toxoplasma , Animais , Humanos , Fígado , Mamíferos , Camundongos , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Tirosina/metabolismo , Virulência
10.
mSphere, v. 7, n. 6, e00403-22, nov-dez. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4713

RESUMO

Chromatin dynamics can regulate all DNA-dependent processes. Access to DNA within chromatin is orchestrated mainly by histones and their posttranslational modifications (PTMs). Like other eukaryotes, the apicomplexan parasite Toxoplasma gondii encodes four canonical histones and five histone variants. In contrast, the linker histone (H1) has never been identified in apicomplexan parasites. In other eukaryotes, histone H1 compacts the chromatin by linking the nucleosome and increasing the DNA compaction. H1 is a multifunctional protein and can be involved in different steps of DNA metabolism or associated with protein complexes related to distinct biological processes. We have identified a novel protein in T. gondii (“TgH1-like”) that, although lacking the globular domain of mammalian H1, is remarkably like the H1-like proteins of bacteria and trypanosomatids. Our results demonstrate that TgH1-like is a nuclear protein associated with chromatin and other histones. Curiously, TgH1-like is also in the nucleolus and associated with ribosomal proteins, indicating a versatile function in this parasite. Although knockout of the tgh1-like gene does not affect the cell cycle, it causes endopolygeny and asynchronous division. Interestingly, mutation of posttranslationally modified amino acids results in defects in cell division like those in the Δtgh1-like mutant, showing that these sites are important for protein function. Furthermore, in the bradyzoite stage, this protein is expressed only in dividing parasites, reinforcing its importance in cell division. Indeed, the absence of TgH1-like decreases compaction of peripheral chromatin, confirming its role in the chromatin modulation in T. gondii. Histone H1, or linker histone, is an important protein that binds to the nucleosome, aiding chromatin compaction. Here, we characterize for the first time a linker histone in T. gondii, named TgH1-like. It is a small and basic protein that corresponds only to the C-terminal portion of the human H1 but is similar to histone H1 from trypanosomatids and bacteria. TgH1-like is located in the nucleus, interacts with nucleosome histones, and acts in chromatin structure and cell division. Our findings show for the first time the presence of a histone H1 protein in an apicomplexan parasite and will provide new insights into cell division and chromatin dynamics in T. gondii and related parasites.

11.
mSphere ; 5(1)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075881

RESUMO

During host cell invasion, the eukaryotic pathogen Toxoplasma gondii forms a parasitophorous vacuole to safely reside within the cell, while it is partitioned from host cell defense mechanisms. From within this safe niche, parasites sabotage multiple host cell systems, including gene expression, apoptosis, and intracellular immune recognition, by secreting a large arsenal of effector proteins. Many parasite proteins studied for active host cell manipulative interactions have been kinases. The translocation of effectors from the parasitophorous vacuole into the host cell is mediated by a putative translocon complex, which includes the proteins MYR1, MYR2, and MYR3. Whether other proteins are involved in the structure or regulation of this putative translocon is not known. We have discovered that the secreted protein GRA44, which contains a putative acid phosphatase domain, interacts with members of this complex and is required for host cell effects downstream of effector secretion. We have determined that GRA44 is processed in a region with homology to sequences targeted by protozoan proteases of the secretory pathway and that both major cleavage fragments are secreted into the parasitophorous vacuole. Immunoprecipitation experiments showed that GRA44 interacts with a large number of secreted proteins, including MYR1. Importantly, conditional knockdown of GRA44 resulted in a lack of host cell c-Myc upregulation, which mimics the phenotype seen when members of the translocon complex are genetically disrupted. Thus, the putative acid phosphatase GRA44 is crucial for host cell alterations during Toxoplasma infection and is associated with the translocon complex which Toxoplasma relies upon for success as an intracellular pathogen.IMPORTANCE Approximately one-third of humans are infected with the parasite Toxoplasma gondiiToxoplasma infections can lead to severe disease in those with a compromised or suppressed immune system. Additionally, infections during pregnancy present a significant health risk to the developing fetus. Drugs that target this parasite are limited, have significant side effects, and do not target all disease stages. Thus, a thorough understanding of how the parasite propagates within a host is critical in the discovery of novel therapeutic targets. Toxoplasma replication requires that it enter the cells of the infected organism. In order to survive the environment inside a cell, Toxoplasma secretes a large repertoire of proteins, which hijack a number of important cellular functions. How these Toxoplasma proteins move from the parasite into the host cell is not well understood. Our work shows that the putative phosphatase GRA44 is part of a protein complex responsible for this process.


Assuntos
Fosfatase Ácida/metabolismo , Fibroblastos/parasitologia , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Protozoários/metabolismo , Fosfatase Ácida/genética , Deleção de Genes , Humanos , Transporte Proteico , Proteínas de Protozoários/genética , Vacúolos/metabolismo
12.
mBio ; 11(1)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047127

RESUMO

Toxoplasma gondii's single mitochondrion is very dynamic and undergoes morphological changes throughout the parasite's life cycle. During parasite division, the mitochondrion elongates, enters the daughter cells just prior to cytokinesis, and undergoes fission. Extensive morphological changes also occur as the parasite transitions from the intracellular environment to the extracellular environment. We show that treatment with the ionophore monensin causes reversible constriction of the mitochondrial outer membrane and that this effect depends on the function of the fission-related protein Fis1. We also observed that mislocalization of the endogenous Fis1 causes a dominant-negative effect that affects the morphology of the mitochondrion. As this suggests that Fis1 interacts with proteins critical for maintenance of mitochondrial structure, we performed various protein interaction trap screens. In this manner, we identified a novel outer mitochondrial membrane protein, LMF1, which is essential for positioning of the mitochondrion in intracellular parasites. Normally, while inside a host cell, the parasite mitochondrion is maintained in a lasso shape that stretches around the parasite periphery where it has regions of coupling with the parasite pellicle, suggesting the presence of membrane contact sites. In intracellular parasites lacking LMF1, the mitochondrion is retracted away from the pellicle and instead is collapsed, as normally seen only in extracellular parasites. We show that this phenotype is associated with defects in parasite fitness and mitochondrial segregation. Thus, LMF1 is necessary for mitochondrial association with the parasite pellicle during intracellular growth, and proper mitochondrial morphology is a prerequisite for mitochondrial division.IMPORTANCEToxoplasma gondii is an opportunistic pathogen that can cause devastating tissue damage in the immunocompromised and congenitally infected. Current therapies are not effective against all life stages of the parasite, and many cause toxic effects. The single mitochondrion of this parasite is a validated drug target, and it changes its shape throughout its life cycle. When the parasite is inside a cell, the mitochondrion adopts a lasso shape that lies in close proximity to the pellicle. The functional significance of this morphology is not understood and the proteins involved are currently not known. We have identified a protein that is required for proper mitochondrial positioning at the periphery and that likely plays a role in tethering this organelle. Loss of this protein results in dramatic changes to the mitochondrial morphology and significant parasite division and propagation defects. Our results give important insight into the molecular mechanisms regulating mitochondrial morphology.


Assuntos
Mitocôndrias/fisiologia , Proteínas de Protozoários/fisiologia , Toxoplasma/citologia , Estágios do Ciclo de Vida , Monensin/farmacologia , Proteínas de Protozoários/genética , Toxoplasma/efeitos dos fármacos , Toxoplasma/genética
13.
mSphere ; 4(4)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366706

RESUMO

The opportunistic pathogen Toxoplasma gondii is highly adept at manipulating host cell functions. While inside a host cell, Toxoplasma divides within a parasitophorous vacuole from which it secretes numerous effector proteins from its dense granules. Many of these so-called GRA proteins are translocated from the parsitophorous vacuole into the host cell where they directly disrupt host signaling pathways. The machinery that drives the translocation of GRA proteins across the parasitophorous vacuole membrane is being elucidated through both genetic and biochemical approaches. A new mSphere research article (M. W. Panas, A. Ferrel, A. Naor, E. Tenborg, et al., mSphere 4:e00276-19, 2019, https://doi.org/10.1128/mSphere.00276-19) describes how the kinase ROP17, which is secreted from the parasite's rhoptries into the host cell during invasion, regulates the translocation of GRA effectors.


Assuntos
Proteínas de Protozoários , Toxoplasma , Proteínas Quinases , Transporte Proteico , Vacúolos , Fatores de Virulência
14.
Sci Rep ; 9(1): 5924, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976120

RESUMO

The propagation of Toxoplasma gondii is accomplished by repeated lytic cycles of parasite attachment to a host cell, invasion, replication within a parasitophorous vacuole, and egress from the cell. This lytic cycle is delicately regulated by calcium-dependent reversible phosphorylation of the molecular machinery that drives invasion and egress. While much progress has been made elucidating the protein kinases and substrates central to parasite propagation, little is known about the relevant protein phosphatases. In this study, we focused on the five protein phosphatases that are predicted to be membrane-associated either integrally or peripherally. We have determined that of these only PPM5C, a PP2C family member, localizes to the plasma membrane of Toxoplasma. Disruption of PPM5C results in a slow propagation phenotype in tissue culture. Interestingly, parasites lacking PPM5C divide and undergo egress at a normal rate, but have a deficiency in attaching to host cells. Both membrane localization and phosphatase activity are required for PPM5C's role in attachment. Phosphoproteomic analysis show relatively few phosphorylation sites being affected by PPM5C deletion in extracellular parasites of which several are found on proteins involved in signaling cascades. This implies that PPM5C is part of a wider regulatory network important for attachment to host cells.


Assuntos
Membrana Celular/metabolismo , Junções Célula-Matriz/metabolismo , Interações Hospedeiro-Parasita , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Sinalização do Cálcio , Membrana Celular/parasitologia , Junções Célula-Matriz/parasitologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Humanos , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas de Protozoários/genética , Toxoplasmose/parasitologia
15.
Mol Microbiol ; 111(1): 46-64, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362624

RESUMO

Dynamin-related proteins (Drps) are involved in diverse processes such as organelle division and vesicle trafficking. The intracellular parasite Toxoplasma gondii possesses three distinct Drps. TgDrpC, whose function remains unresolved, is unusual in that it lacks a conserved GTPase Effector Domain, which is typically required for function. Here, we show that TgDrpC localizes to cytoplasmic puncta; however, in dividing parasites, TgDrpC redistributes to the growing edge of the daughter cells. By conditional knockdown, we determined that loss of TgDrpC stalls division and leads to rapid deterioration of multiple organelles and the IMC. We also show that TgDrpC interacts with proteins that exhibit homology to those involved in vesicle transport, including members of the adaptor complex 2. Two of these proteins, a homolog of the adaptor protein 2 (AP-2) complex subunit alpha-1 and a homolog of the ezrin-radixin-moesin (ERM) family proteins, localize to puncta and associate with the daughter cells. Consistent with the association with vesicle transport proteins, re-distribution of TgDrpC to the IMC during division is dependent on post-Golgi trafficking. Together, these results support that TgDrpC contributes to vesicle trafficking and is critical for stability of parasite organelles and division.


Assuntos
Dinaminas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/crescimento & desenvolvimento , Divisão Celular , Células Cultivadas , Dinaminas/genética , Fibroblastos/parasitologia , Técnicas de Silenciamento de Genes , Humanos , Organogênese , Toxoplasma/genética
16.
mBio ; 9(2)2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559568

RESUMO

In the protozoan parasite Toxoplasma gondii, protein kinases have been shown to play key roles in regulating parasite motility, invasion, replication, egress, and survival within the host. The tyrosine kinase-like (TKL) family of proteins are an unexplored set of kinases in Toxoplasma Of the eight annotated TKLs in the Toxoplasma genome, a recent genome-wide loss-of-function screen showed that six are important for tachyzoite fitness. By utilizing an endogenous tagging approach, we showed that these six T. gondii TKLs (TgTKLs) localize to various subcellular compartments, including the nucleus, the cytosol, the inner membrane complex, and the Golgi apparatus. To gain insight into the function of TKLs in Toxoplasma, we first characterized TgTKL1, which contains the plant-like enhanced disease resistance 1 (EDR1) domain and localizes to the nucleus. TgTKL1 knockout parasites displayed significant defects in progression through the lytic cycle; we show that the defects were due to specific impairment of host cell attachment. Transcriptomics analysis identified over 200 genes of diverse functions that were differentially expressed in TgTKL1 knockout parasites. Importantly, numerous genes implicated in host cell attachment and invasion were among those most significantly downregulated, resulting in defects in microneme secretion and processing. Significantly, all of the mice inoculated intraperitoneally with TgTKL1 knockout parasites survived the infection, suggesting that TgTKL1 plays an essential role in acute toxoplasmosis. Together, these findings suggest that TgTKL1 mediates a signaling pathway that regulates the expression of multiple factors required for parasite virulence, underscoring the potential of this kinase as a novel therapeutic target.IMPORTANCEToxoplasma gondii is a protozoan parasite that can cause chronic and life-threatening disease in mammals; new drugs are greatly needed for treatment. One attractive group of drug targets consists of parasite kinases containing unique features that distinguish them from host proteins. In this report, we identify and characterize a previously unstudied kinase, TgTKL1, that localizes to the nucleus and contains a domain architecture unique to plants and protozoa. By disrupting TgTKL1, we showed that this kinase is required for the proper expression of hundreds of genes, including many that are required for the parasite to gain entry into the host cell. Specifically, parasites lacking TgTKL1 have defects in host cell attachment, resulting in impaired growth in vitro and a complete loss of virulence in mice. This report provides insight into the importance of the parasite tyrosine kinase-like kinases and establishes TgTKL1 as a novel and essential virulence factor in Toxoplasma.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia , Animais , Feminino , Camundongos , Proteínas Tirosina Quinases/genética , Proteínas de Protozoários/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Toxoplasma/genética
17.
Int J Parasitol ; 48(3-4): 225-232, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29170086

RESUMO

Antibody detection assays have long been the first line test to confirm infection with the zoonotic parasite Toxoplasma gondii. However, challenges exist with serological diagnosis, especially distinguishing between acute, latent and reactivation disease states. The sensitivity and specificity of serological tests might be improved by testing for antibodies against parasite antigens other than those typically found on the parasite surface during the acute stage. To this end, we analysed the reactivity profile of human sera, identified as positive for anti-Toxoplasma gondii IgG in traditional assays, by indirect immunofluorescence reactivity to acute stage intracellular tachyzoites and in vitro-induced latent stage bradyzoites. The majority of anti-Toxoplasma gondii IgG positive sera recognised both intracellularly replicating tachyzoites and in vitro-induced bradyzoites with varying patterns of immune-reactivity. Furthermore, anti-bradyzoite antibodies were not detected in sera that were IgM-positive/IgG-negative. These results demonstrate that anti-Toxoplasma gondii-positive sera may contain antibodies to a variety of antigens in addition to those traditionally used in serological tests, and suggest the need for further investigations into the utility of anti-bradyzoite-specific antibodies to aid in diagnosis of Toxoplasma gondii infection.


Assuntos
Anticorpos Antiprotozoários/sangue , Toxoplasma/imunologia , Toxoplasma/isolamento & purificação , Adolescente , Adulto , Fatores Etários , Idoso , Animais , Anticorpos Antiprotozoários/imunologia , Western Blotting , Criança , Chlorocebus aethiops , Feminino , Fibroblastos , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Células Vero , Adulto Jovem
18.
Eur J Med Chem ; 143: 866-880, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223887

RESUMO

The development of new chemical entities against the major diseases caused by parasites is highly desired. A library of thirty diamines analogs following a minimalist approach and supported by chemoinformatics tools have been prepared and evaluated against apicomplexan parasites. Different member of the series of N,N'-disubstituted aliphatic diamines shown in vitro activities at submicromolar concentrations and high levels of selectivity against Toxoplasma gondii and in chloroquine-sensitive and resistant-strains of Plasmodium falciparum. In order to demonstrate the importance of the secondary amines, ten N,N,N',N'-tetrasubstituted aliphatic diamines derivatives were synthesized being considerably less active than their disubstituted counterpart. Theoretical studies were performed to establish the electronic factors that govern the activity of the compounds.


Assuntos
Antiparasitários/farmacologia , Apicomplexa/efeitos dos fármacos , Poliaminas/farmacologia , Antiparasitários/síntese química , Antiparasitários/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Poliaminas/síntese química , Poliaminas/química , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-29158278

RESUMO

Protozoan parasites, including the apicomplexan pathogens Plasmodium falciparum (which causes malaria) and Toxoplasma gondii (which causes toxoplasmosis), infect millions of people worldwide and represent major human disease burdens. Despite their prevalence, therapeutic strategies to treat infections caused by these parasites remain limited and are threatened by the emergence of drug resistance, highlighting the need for the identification of novel drug targets. Recently, homologues of the core autophagy proteins, including Atg8 and Atg3, were identified in many protozoan parasites. Importantly, components of the Atg8 conjugation system that facilitate the lipidation of Atg8 are required for both canonical and parasite-specific functions and are essential for parasite viability. Structural characterization of the P. falciparum Atg3-Atg8 (PfAtg3-Atg8) interaction has led to the identification of compounds that block this interaction. Additionally, many of these compounds inhibit P. falciparum growth in vitro, demonstrating the viability of this pathway as a drug target. Given the essential role of the Atg8 lipidation pathway in Toxoplasma, we sought to determine whether three PfAtg3-Atg8 interaction inhibitors identified in the Medicines for Malaria Venture Malaria Box exerted a similar inhibitory effect in Toxoplasma While all three inhibitors blocked Toxoplasma replication in vitro at submicromolar concentrations, they did not inhibit T. gondii Atg8 (TgAtg8) lipidation. Rather, high concentrations of two of these compounds induced TgAtg8 lipidation and fragmentation of the parasite mitochondrion, similar to the effects seen following starvation and monensin-induced autophagy. Additionally, we report that one of the PfAtg3-Atg8 interaction inhibitors induces Toxoplasma egress and provide evidence that this is mediated by an increase in intracellular calcium in response to drug treatment.


Assuntos
Antiprotozoários/farmacologia , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Toxoplasma/efeitos dos fármacos , Sequência de Aminoácidos , Antiprotozoários/química , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Sítios de Ligação , Replicação do DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Simulação de Acoplamento Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Bibliotecas de Moléculas Pequenas/química , Especificidade da Espécie , Relação Estrutura-Atividade , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
20.
PLoS One ; 12(11): e0188040, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29141004

RESUMO

The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma, reveals a novel mechanism for atovaquone resistance, and exposes the physiological plasticity of this important human pathogen.


Assuntos
DNA Mitocondrial/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Toxoplasma/genética , Animais , Atovaquona/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Toxoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA