Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0227679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940403

RESUMO

Motivated by the One Health paradigm, we found the expected changes in temperature and UV radiation (UVR) to be a common trigger for enhancing the risk that viruses, vectors, and diseases pose to human and animal health. We compared data from the mosquito field collections and medical studies with regional climate model projections to examine the impact of climate change on the spreading of one malaria vector, the circulation of West Nile virus (WNV), and the incidence of melanoma. We analysed data obtained from ten selected years of standardised mosquito vector sampling with 219 unique location-year combinations, and 10 years of melanoma incidence. Trends in the observed data were compared to the climatic variables obtained by the coupled regional Eta Belgrade University and Princeton Ocean Model for the period 1961-2015 using the A1B scenario, and the expected changes up to 2030 were presented. Spreading and relative abundance of Anopheles hyrcanus was positively correlated with the trend of the mean annual temperature. We anticipated a nearly twofold increase in the number of invaded sites up to 2030. The frequency of WNV detections in Culex pipiens was significantly correlated to overwintering temperature averages and seasonal relative humidity at the sampling sites. Regression model projects a twofold increase in the incidence of WNV positive Cx. pipiens for a rise of 0.5°C in overwintering TOctober-April temperatures. The projected increase of 56% in the number of days with Tmax ≥ 30°C (Hot Days-HD) and UVR doses (up to 1.2%) corresponds to an increasing trend in melanoma incidence. Simulations of the Pannonian countries climate anticipate warmer and drier conditions with possible dominance of temperature and number of HD over other ecological factors. These signal the importance of monitoring the changes to the preparedness of mitigating the risk of vector-borne diseases and melanoma.


Assuntos
Mudança Climática , Malária/epidemiologia , Melanoma/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Animais , Anopheles/metabolismo , Anopheles/patogenicidade , Culex/virologia , Humanos , Incidência , Insetos Vetores/virologia , Mosquitos Vetores/virologia , Estações do Ano , Sérvia/epidemiologia , Temperatura , Vírus do Nilo Ocidental , Iugoslávia/epidemiologia
2.
Entropy (Basel) ; 20(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33265658

RESUMO

Analysis of daily solar irradiation variability and predictability in space and time is important for energy resources planning, development, and management. The natural variability of solar irradiation is being complicated by atmospheric conditions (in particular cloudiness) and orography, which introduce additional complexity into the phenomenological records. To address this question for daily solar irradiation data recorded during the years 2013, 2014 and 2015 at 11 stations measuring solar irradiance on La Reunion French tropical Indian Ocean Island, we use a set of novel quantitative tools: Kolmogorov complexity (KC) with its derivative associated measures and Hamming distance (HAM) and their combination to assess complexity and corresponding predictability. We find that all half-day (from sunrise to sunset) solar irradiation series exhibit high complexity. However, all of them can be classified into three groups strongly influenced by trade winds that circulate in a "flow around" regime: the windward side (trade winds slow down), the leeward side (diurnal thermally-induced circulations dominate) and the coast parallel to trade winds (winds are accelerated due to Venturi effect). We introduce Kolmogorov time (KT) that quantifies the time span beyond which randomness significantly influences predictability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA