RESUMO
Thwaites Glacier is one of the fastest-changing ice-ocean systems in Antarctica1-3. Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland4, making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre2,3,5. The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat3,6, both of which are largely unknown. Here we show-using observations from a hot-water-drilled access hole-that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice-ocean boundary layer actively restrict the vertical mixing of heat towards the ice base7,8, resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates.
RESUMO
Swath radar technology enables three-dimensional mapping of modern glacier beds over large areas at resolutions that are higher than those typically used in ice-flow models. These data may enable new understanding of processes at the ice-bed interface. Here, we use two densely surveyed swath-mapped topographies (<50 m2 resolution) of Thwaites Glacier to investigate the sensitivity of inferred basal friction proxies to bed roughness magnitude and orientation. Our work suggests that along-flow roughness influences inferred friction more than transverse-flow roughness, which agrees with analytic form-drag sliding theory. Using our model results, we calculate the slip length (the ratio of internal shear to basal slip). We find excellent agreement between the numerically derived slip lengths and slip lengths predicted by analytic form-drag sliding theory, which suggests that unresolved short wavelength bed roughness may control sliding in the Thwaites interior.
RESUMO
The retreating Pine Island Glacier (PIG), West Antarctica, presently contributes ~5-10% of global sea-level rise. PIG's retreat rate has increased in recent decades with associated thinning migrating upstream into tributaries feeding the main glacier trunk. To project future change requires modelling that includes robust parameterisation of basal traction, the resistance to ice flow at the bed. However, most ice-sheet models estimate basal traction from satellite-derived surface velocity, without a priori knowledge of the key processes from which it is derived, namely friction at the ice-bed interface and form drag, and the resistance to ice flow that arises as ice deforms to negotiate bed topography. Here, we present high-resolution maps, acquired using ice-penetrating radar, of the bed topography across parts of PIG. Contrary to lower-resolution data currently used for ice-sheet models, these data show a contrasting topography across the ice-bed interface. We show that these diverse subglacial landscapes have an impact on ice flow, and present a challenge for modelling ice-sheet evolution and projecting global sea-level rise from ice-sheet loss.
RESUMO
Changes at the grounding line of ice streams have consequences for inland ice dynamics and hence sea level. Despite substantial evidence documenting upstream propagation of frontal change, the mechanisms by which these changes are transmitted inland are not well understood. In this vein, the frequency response of an idealized ice stream to periodic forcing in the downstream strain rate is examined for basally and laterally resisted ice streams using a one-dimensional, linearized membrane stress approximation. This reveals two distinct behavioural branches, which we find to correspond to different mechanisms of upstream velocity and thickness propagation, depending on the forcing frequency. At low frequencies (centennial to millennial periods), slope and thickness covary hundreds of kilometres inland, and the shallow-ice approximation is sufficient to explain upstream propagation, which occurs through changes in grounding-line flow and geometry. At high frequencies (decadal to sub-decadal periods), penetration distances are tens of kilometres; while velocity adjusts rapidly to such forcing, thickness varies little and upstream propagation occurs through the direct transmission of membrane stresses. Propagation properties vary significantly between 29 Antarctic ice streams considered. A square-wave function in frontal stress is explored by summing frequency solutions, simulating some aspects of the dynamical response to sudden ice-shelf change.
RESUMO
Many glaciers along the margins of the Greenland and Antarctic ice sheets are accelerating and, for this reason, contribute increasingly to global sea-level rise. Globally, ice losses contribute approximately 1.8 mm yr(-1) (ref. 8), but this could increase if the retreat of ice shelves and tidewater glaciers further enhances the loss of grounded ice or initiates the large-scale collapse of vulnerable parts of the ice sheets. Ice loss as a result of accelerated flow, known as dynamic thinning, is so poorly understood that its potential contribution to sea level over the twenty-first century remains unpredictable. Thinning on the ice-sheet scale has been monitored by using repeat satellite altimetry observations to track small changes in surface elevation, but previous sensors could not resolve most fast-flowing coastal glaciers. Here we report the use of high-resolution ICESat (Ice, Cloud and land Elevation Satellite) laser altimetry to map change along the entire grounded margins of the Greenland and Antarctic ice sheets. To isolate the dynamic signal, we compare rates of elevation change from both fast-flowing and slow-flowing ice with those expected from surface mass-balance fluctuations. We find that dynamic thinning of glaciers now reaches all latitudes in Greenland, has intensified on key Antarctic grounding lines, has endured for decades after ice-shelf collapse, penetrates far into the interior of each ice sheet and is spreading as ice shelves thin by ocean-driven melt. In Greenland, glaciers flowing faster than 100 m yr(-1) thinned at an average rate of 0.84 m yr(-1), and in the Amundsen Sea embayment of Antarctica, thinning exceeded 9.0 m yr(-1) for some glaciers. Our results show that the most profound changes in the ice sheets currently result from glacier dynamics at ocean margins.
RESUMO
The problem of forecasting the future behaviour of the Antarctic ice sheet is considered. We describe a method for optimizing this forecast by combining a model of ice sheet flow with observations. Under certain assumptions, a linearized model of glacial flow can be combined with observations of the thickness change, snow accumulation, and ice-flow, to forecast the Antarctic contribution to sea-level rise. Numerical simulations show that this approach can potentially be used to test whether changes observed in Antarctica are consistent with the natural forcing of a stable ice sheet by snowfall fluctuations. To make predictions under less restrictive assumptions, improvements in models of ice flow are needed. Some of the challenges that this prediction problem poses are highlighted, and potentially useful approaches drawn from numerical weather prediction are discussed.