Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295201

RESUMO

Application of nanocarriers for drug delivery brings numerous advantages, allowing both minimization of side effects common in systemic drug delivery and improvement in targeting, which has made it the focal point of nanoscience for a number of years. While most of the studies are focused on encapsulation of hydrophobic drugs, delivery of hydrophilic compounds is typically performed via covalent attachment, which often requires chemical modification of the drug and limits the release kinetics. In this paper, we report synthesis of biphilic copolymers of various compositions capable of self-assembly in water with the formation of nanoparticles and suitable for ionic binding of the common anticancer drug doxorubicin. The copolymers are synthesized by radical copolymerization of N-vinyl-2-pyrrolidone and acrylic acid using n-octadecyl-mercaptan as a chain transfer agent. With an increase of the carboxyl group's share in the chain, the role of the electrostatic stabilization factor of the nanoparticles increased as well as the ability of doxorubicin as an ion binder. A mathematical description of the kinetics of doxorubicin binding and release is given and thermodynamic functions for the equilibrium ionic binding of doxorubicin are calculated.

2.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209367

RESUMO

The kinetic regularities of the initial stage of chemical oxidative polymerization of methylene blue under the action of ammonium peroxodisulfate in an aqueous medium have been established by the method of potentiometry. It was shown that the methylene blue polymerization mechanism includes the stages of chain initiation and growth. It was found that the rate of the initial stage of the reaction obeys the kinetic equation of the first order with the activation energy 49 kJ × mol-1. Based on the proposed mechanism of oxidative polymerization of methylene blue and the data of MALDI, EPR, and IR spectroscopy methods, the structure of the polymethylene blue chain is proposed. It has been shown that polymethylene blue has a metallic luster, and its electrical conductivity is probably the result of conjugation over extended chain sections and the formation of charge transfer complexes. It was found that polymethylene blue is resistant to heating up to a temperature of 440 K and then enters into exothermic transformations without significant weight loss. When the temperature rises above 480 K, polymethylene blue is subject to endothermic degradation and retains 75% of its mass up to 1000 K.

3.
Mater Sci Eng C Mater Biol Appl ; 75: 1075-1082, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415392

RESUMO

Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample.


Assuntos
Fibroblastos/metabolismo , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Álcool de Polivinil/química , Engenharia Tecidual , Animais , Adesão Celular , Linhagem Celular , Compostos de Epóxi/química , Fibroblastos/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Metacrilatos/química , Camundongos , Porosidade
4.
Mater Sci Eng C Mater Biol Appl ; 42: 461-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063142

RESUMO

Various biomolecules, for example proteins, peptides etc., entrapped in polymer matrices, impact interactions between matrix and cells, including stimulation of cell adhesion and proliferation. Delta-sleep inducing peptide (DSIP) possesses numerous beneficial properties, including its abilities in burn treatment and neuronal protection. DSIP entrapment in two macroporous polymer matrices based on copolymer of dimethylaminoethyl methacrylate and methylen-bis-acrylamide (Co-DMAEMA-MBAA) and copolymer of acrylic acid and methylen-bis-acrylamide (Co-AA-MBAA) has been studied. Quite 100% of DSIP has been entrapped into positively charged Co-DMAEMA-MBAA matrix, while the quantity of DSIP adsorbed on negatively charged Co-AA-MBAA was only 2-6%. DSIP release from Co-DMAEMA-MBAA was observed in saline solutions (0.9% NaCl and PBS) while there was no DSIP release in water or 25% ethanol, thus ionic strength was a reason of this process.


Assuntos
Acrilamidas/química , Peptídeo Indutor do Sono Delta/isolamento & purificação , Peptídeo Indutor do Sono Delta/farmacocinética , Metacrilatos/química , Polímeros/química , Adsorção , Peptídeo Indutor do Sono Delta/química , Hidrogel de Polietilenoglicol-Dimetacrilato , Concentração de Íons de Hidrogênio , Teste de Materiais , Porosidade , Cloreto de Sódio
5.
J Mater Sci Mater Med ; 21(5): 1521-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20177741

RESUMO

Amphiphilic poly-N-vinylpyrrolidone derivatives (Amph-PVP) with different molecular weight of hydrophilic PVP fragment and one terminal hydrophobic n-alkyl fragment of different length were synthesized for preparation of nano-scaled particles in aqueous media. To estimate novel polymer efficiency and perspective as basis for drug delivery systems, the polymeric micelle-like particles were prepared by dialysis and solvent evaporation methods. Indomethacin was incorporated into hydrophobic inner core of these nanoparticles as a typical model drug. From the dynamic light-scattering measurements, the size of particles formed was less than 200 nm with narrow monodisperse size distribution and nanoparticles size slightly increased with the amount of indomethacin encapsulated into inner core of Amph-PVP particles. The critical aggregation concentration values for prepared polymer samples determined by fluorescence spectroscopy were in micromole range which is lower than it is for common low molecular weight surfactants. As the hydrophobic fragment of amphiphilic polymer increased, the critical aggregation concentration values decreased. An increase of polymer hydrophilic fragment molecular weight produced larger nanoaggregates. In vitro release experiments using indomethacin-loaded Amph-PVP nanoparticles exhibited the sustained release behavior without any burst effect for most polymer samples.


Assuntos
Indometacina/química , Polímeros/química , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Peso Molecular , Nanopartículas , Pirrolidinonas , Solventes , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA