Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 8(1): 79-88, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38264085

RESUMO

We demonstrate for the first time that Galactic cosmic rays with energies as high as ∼1010 eV can trigger a cascade of low-energy (<20 eV) secondary electrons that could be a significant contributor to the interstellar synthesis of prebiotic molecules whose delivery by comets, meteorites, and interplanetary dust particles may have kick-started life on Earth. For the energetic processing of interstellar ice mantles inside dark, dense molecular clouds, we explore the relative importance of low-energy (<20 eV) secondary electrons-agents of radiation chemistry-and low-energy (<10 eV), nonionizing photons-instigators of photochemistry. Our calculations indicate fluxes of ∼102 electrons cm-2 s-1 for low-energy secondary electrons produced within interstellar ices due to attenuated Galactic cosmic-ray protons. Consequently, in certain star-forming regions where internal high-energy radiation sources produce ionization rates that are observed to be a thousand times greater than the typical interstellar Galactic ionization rate, the flux of low-energy secondary electrons should far exceed that of nonionizing photons. Because reaction cross sections can be several orders of magnitude larger for electrons than for photons, even in the absence of such enhancement, our calculations indicate that secondary low-energy (<20 eV) electrons are at least as significant as low-energy (<10 eV) nonionizing photons in the interstellar synthesis of prebiotic molecules. Most importantly, our results demonstrate the pressing need for explicitly incorporating low-energy electrons in current and future astrochemical simulations of cosmic ices. Such models are critically important for interpreting James Webb Space Telescope infrared measurements, which are currently being used to probe the origins of life by studying complex organic molecules found in ices near star-forming regions.

2.
Faraday Discuss ; 168: 249-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302384

RESUMO

In the interstellar medium, UV photolysis of condensed methanol (CH3OH), contained in ice mantles surrounding dust grains, is thought to be the mechanism that drives the formation of "complex" molecules, such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), and glycolaldehyde (HOCH2CHO). The source of this reaction-initiating UV light is assumed to be local because externally sourced UV radiation cannot penetrate the ice-containing dark, dense molecular clouds. Specifically, exceedingly penetrative high-energy cosmic rays generate secondary electrons within the clouds through molecular ionizations. Hydrogen molecules, present within these dense molecular clouds, are excited in collisions with these secondary electrons. It is the UV light, emitted by these electronically excited hydrogen molecules, that is generally thought to photoprocess interstellar icy grain mantles to generate "complex" molecules. In addition to producing UV light, the large numbers of low-energy (< 20 eV) secondary electrons, produced by cosmic rays, can also directly initiate radiolysis reactions in the condensed phase. The goal of our studies is to understand the low-energy, electron-induced processes that occur when high-energy cosmic rays interact with interstellar ices, in which methanol, a precursor of several prebiotic species, is the most abundant organic species. Using post-irradiation temperature-programmed desorption, we have investigated the radiolysis initiated by low-energy (7 eV and 20 eV) electrons in condensed methanol at - 85 K under ultrahigh vacuum (5 x 10(-10) Torr) conditions. We have identified eleven electron-induced methanol radiolysis products, which include many that have been previously identified as being formed by methanol UV photolysis in the interstellar medium. These experimental results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of "complex" molecules previously thought to form exclusively via UV photons.


Assuntos
Elétrons , Hidrogênio/química , Metanol/química , Astros Celestes/química , Acetaldeído/análogos & derivados , Acetaldeído/síntese química , Ácido Acético/síntese química , Poeira Cósmica/análise , Radiação Cósmica , Ésteres do Ácido Fórmico/síntese química , Gelo/análise , Éteres Metílicos/síntese química , Fotólise , Temperatura , Raios Ultravioleta
3.
J Phys Condens Matter ; 22(8): 084006, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21389382

RESUMO

The dynamics of electron-induced reactions in condensed trifluoroiodomethane (CF3I) were studied under ultrahigh vacuum conditions. Seven CF3I radiolysis products (C2F6, C2F5I, C2F3I, CF2I2, C2F4I2, CFI3 and C2F3I3) were identified using temperature-programmed desorption experiments conducted after irradiation with 4 eV electrons. Although C2F6 formation at energies above 4 eV is ascribed to electron-induced electronic excitation followed by prompt dissociation of the C-I bond to form [Formula: see text] radicals that dimerize, the formation of the other six radiolysis products at low sub-ionization incident electron energies is attributed to dissociative electron attachment (DEA) because of the observed resonance peaks in the radiolysis product yields as functions of incident electron energy (∼2 to ∼ 7 eV). All seven CF3I electron-induced reaction products were also identified following irradiation with 500 eV electrons. While dissociative electron attachment and/or electron impact excitation may play an important role in the high-energy radiation-induced synthesis of the high-yield product C2F6, a dramatic enhancement of up to ∼ 2 × 10(4) in product yield per electron at 500 eV relative to that at 4 eV for some products suggests, however, that DEA is not the dominant mechanism for the high-energy radiation-induced synthesis of those products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA