Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ayurveda Integr Med ; 9(2): 90-98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29239790

RESUMO

BACKGROUND: Aegle marmelos (Bilva) is being used in Ayurveda for the treatment of several inflammatory disorders. The plant is a member of a fixed dose combination of Dashamoola in Ayurveda. However, the usage of roots/root bark or stems is associated with sustainability concerns. OBJECTIVES: The present study is aimed to compare the anti-inflammatory properties of different extracts of young roots (year wise) and mature parts of Bilva plants collected from different geographical locations in India, so as to identify a sustainable source for Ayurvedic formulation. MATERIALS AND METHODS: A total of 191 extracts (petroleum ether, ethyl acetate, ethanol and aqueous) of roots, stems and leaves of A. marmelos (collected from Gujarat, Maharashtra, Odisha, Chhattisgarh, Karnataka and Andhra Pradesh region) were tested for anti-inflammatory effects in vitro on isolated target enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), lymphocyte proliferation assay (LPA), cytokine profiling in LPS induced mouse macrophage (RAW 264.7) cell line and in vivo carrageenan induced paw edema in mice. RESULTS: Of 191 extracts, 44 extracts showed COX-2 inhibition and 38 extracts showed COX-1 inhibition, while none showed 5-LOX inhibition. Cytokine analysis of the 44 extracts showing inhibition of COX-2 suggested that only 17 extracts modulated the cytokines by increasing the anti-inflammatory cytokine IL-2 and reducing the pro-inflammatory cytokines like IL-1ß, MIP1-α and IL-6. The young (2 and 3 years) roots of Bilva plants from Gujarat and young (1 yr) roots from Odisha showed the most potent anti-inflammatory activity by suppressing the pro-inflammatory cytokines and inducing anti-inflammatory cytokines. These three extracts have also shown in vivo anti-inflammatory activity comparable to that in adult stem and root barks. CONCLUSION: The present study reveals that young roots of Bilva plants from Gujarat and Odisha region could form a sustainable source for use in Ayurvedic formulations with anti-inflammatory activities. The present study also indicates that the region in which the plants are grown and the age of the plants play an important role in exhibiting the anti-inflammatory effect.

2.
Eur J Med Chem ; 112: 289-297, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26907155

RESUMO

Secretory phospholipase A2 (sPLA2) is an important enzyme that plays a key role in various inflammatory diseases including cancer and its inhibitors have been developed as preventive or therapeutic agents. In the present study, a series of new indole containing isoxazole derivatives (10a-10o) is synthesized and evaluated for their sPLA2 inhibitory activities. All compounds (10a-10o) showed significant sPLA2 inhibition activities both in vitro and in vivo studies which is substantiated in in silico studies. Among all the tested compounds, 10o showed potent sPLA2 inhibition activity, that is comparable or more to ursolic acid (positive control). Further studies demonstrated that 10o showed in vitro antiproliferative activity when tested against MCF-7 breast and DU145 prostate cancer cells. Furthermore, compounds 10a-10o obeyed lipinsky's rule of 5 and suggesting druggable properties. The in vitro, in vivo and in silico results are encouraging and warrant pre-clinical studies to develop sPLA2-inhibitory compound 10o as novel therapeutic agent for various inflammatory disorders and several malignancies.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Isoxazóis/química , Isoxazóis/farmacologia , Fosfolipases A2 Secretórias/antagonistas & inibidores , Animais , Anti-Inflamatórios/síntese química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Isoxazóis/síntese química , Masculino , Camundongos , Modelos Moleculares , Fosfolipases A2 Secretórias/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Ratos Wistar
3.
Curr Top Med Chem ; 14(17): 2031-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25322771

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) a tyrosine kinase receptor, plays important roles in angiogenesis, embryonic development, cell proliferation, cell differentiation, and wound healing. The FGFR isoforms and their receptors (FGFRs) considered as a potential targets and under intense research to design potential anticancer agents. Fibroblast growth factors (FGF's) and its growth factor receptors (FGFR) plays vital role in one of the critical pathway in monitoring angiogenesis. In the current study, quantitative pharmacophore models were generated and validated using known FGFR1 inhibitors. The pharmacophore models were generated using a set of 28 compounds (training). The top pharmacophore model was selected and validated using a set of 126 compounds (test set) and also using external validation. The validated pharmacophore was considered as a virtual screening query to screen a database of 400,000 virtual molecules and pharmacophore model retrieved 2800 hits. The retrieved hits were subsequently filtered based on the fit value. The selected hits were subjected for docking studies to observe the binding modes of the retrieved hits and also to reduce the false positives. One of the potential hits (thiazole-2-amine derivative) was selected based the pharmacophore fit value, dock score, and synthetic feasibility. A few analogues of the thiazole-2-amine derivative were synthesized. These compounds were screened for FGFR1 activity and anti-proliferative studies. The top active compound showed 56.87% inhibition of FGFR1 activity at 50 µM and also showed good cellular activity. Further optimization of thiazole-2-amine derivatives is in progress.


Assuntos
Antineoplásicos/síntese química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Tiazóis/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Tiazóis/farmacologia
4.
Bioorg Med Chem Lett ; 22(19): 6160-5, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22929231

RESUMO

An improved synthesis of functionalized aurones has been accomplished via the reaction of benzofuran-3(2H)-one with a range of benzaldehydes in the presence of a mild base EDDA under ultrasound. A number of aurones were synthesized (within 5-30min) and the molecular structure of a representative compound determined by single crystal X-ray diffraction study confirmed Z-geometry of the C-C double bond present within the molecule. Some of the compounds synthesized have shown SIRT1 inhibiting as well as anti proliferative properties against two cancer cell lines in vitro. Compound 3a [(Z)-2-(5-bromo-2-hydroxybenzylidene) benzofuran-3(2H)-one] was identified as a potent inhibitor of SIRT1 (IC(50)=1µM) which showed a dose dependent increase in the acetylation of p53 resulting in induction of apoptosis.


Assuntos
Acetatos/química , Acústica , Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Etilenodiaminas/química , Sirtuína 1/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzofuranos/síntese química , Benzofuranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
5.
Toxicol In Vitro ; 26(3): 396-405, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22245431

RESUMO

Gallic acid (GA) induces apoptosis in various cancer cell lines. In this study, we investigated the apoptotic activity induced by GA on chronic myeloid leukemia (CML) cell line-K562 and the underlying mechanism. GA reduced the viability of K562 cells in a dose and time dependent manner. GA led to G0/G1 phase arrest in K562 cells by promoting p21 and p27 and inhibiting the levels of cyclin D and cyclin E. Further studies indicated apoptosis with impaired mitochondrial function as a result of deranged Bcl-2/Bax ratio, leakage of cytochrome c and PARP cleavage along with DNA fragmentation and by up-regulating the expression of caspase-3. GA also activated the protein expressions of fatty acid synthase ligand and caspase-8. GA is more effective in imatinib resistant-K562 (IR-K562) cells (IC50 4 µM) than on K562 cells (IC50 33 µM). GA inhibited cyclooxygenase-2 (COX-2) in K562 as well as IR-K562 cells appears to be COX-2 involved in the suppression of growth. Interestingly, GA also inhibited BCR/ABL tyrosine kinase and NF-κB. In conclusion, GA induced apoptosis in K562 cells involves death receptor and mitochondrial-mediated pathways by inhibiting BCR/ABL kinase, NF-κB activity and COX-2.


Assuntos
Antineoplásicos/farmacologia , Ácido Gálico/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Benzamidas , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Ácido Gálico/administração & dosagem , Humanos , Mesilato de Imatinib , Concentração Inibidora 50 , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia
6.
Biotechnol Appl Biochem ; 52(Pt 2): 121-33, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18494609

RESUMO

The antiproliferative effects of 15-LOX (15-lipoxygenase) metabolites of arachidonic acid {(15S)-HPETE [(15S)-hydroperoxyeicosatetraenoic acid] and (15S)-HETE [(15S)-hydroxyeicosatetraenoic acid]} and the mechanism(s) involved were studied in the human T-cell leukaemia cell line Jurkat. (15S)-HPETE, the hydroperoxy metabolite of 15-LOX, inhibited the growth of Jurkat cells 3 h after exposure and with an IC(50) value of 10 microM. The hydroxy metabolite of 15-LOX, (15S)-HETE, on the other hand, inhibited the growth of Jurkat cells after 6 h of exposure and with an IC(50) value of 40 microM. The cells exposed to 10 microM (15S)-HPETE for 3 h or to 40 microM (15S)-HETE for 6 h showed increased expression of Fas ligand and FADD (Fas-associated death domain), caspase 8 activation, Bid (BH3-interacting domain death agonist) cleavage, decrease in mitochondrial membrane potential, cytochrome c release, caspase 3 activation, PARP-1 [poly(ADP-ribose) polymerase-1] cleavage and DNA fragmentation, suggesting the involvement of both extrinsic and intrinsic death pathways. Further studies on ROS (reactive oxygen species) generation revealed the involvement of NADPH oxidase. In conclusion, the present study indicates that NADPH oxidase-induced ROS generation activates the Fas-mediated death pathway.


Assuntos
Proteína Ligante Fas/metabolismo , Leucotrienos/química , Leucotrienos/farmacologia , Peróxidos Lipídicos/química , Peróxidos Lipídicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Humanos , Células Jurkat , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NADPH Oxidases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estereoisomerismo , Receptor fas/metabolismo
7.
Leuk Res ; 32(6): 855-64, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18083230

RESUMO

Selective inhibition of the BCR/ABL tyrosine kinase by imatinib (STI571, Glivec/Gleevec) is the therapeutic strategy in patients with chronic myelogenous leukemia (CML). Despite significant hematologic and cytogenetic responses with imatinib, mainly due to the mutations in the Abl kinase domain, resistance occurs in patients with advanced disease. In the present study on imatinib-resistant K562 cells (IR-K562), however, no such mutations in the Abl kinase domain were observed. Further studies revealed the over-expression of COX-2 and MDR-1 in IR-K562 cells suggesting the possible involvement of COX-2 in the development of resistance to imatinib. So, we sought to examine the effect of celecoxib, a selective COX-2 inhibitor, on IR-K562 cells. The results clearly indicate that celecoxib is more effective in IR-K562 cells with a lower IC50 value of 10 microM compared to an IC50 value of 40 microM in K562 cells. This increase in the sensitivity of IR-K562 cells towards celecoxib suggests that the development of resistance in IR-K562 cells is COX-2 dependent. Further studies revealed down-regulation of MDR-1 by celecoxib and a decline in p-Akt levels. Celecoxib-induced apoptosis of IR-K562 cells led to release of cytochrome c, PARP cleavage and decreased Bcl2/Bax ratio. Also, celecoxib at 1 microM concentration induced apoptosis in IR-K562 cells synergistically with imatinib by reducing the IC50 value of imatinib from 10 to 6 microM. In conclusion, the present study indicates over-expression of COX-2 and MDR-1 in IR-K562 cells and celecoxib, a COX-2 specific inhibitor, induces apoptosis by inhibiting COX-2 and down-regulating MDR-1 expression through Akt/p-Akt signaling pathway.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/fisiologia , Resistencia a Medicamentos Antineoplásicos , Piperazinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas , Celecoxib , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo XI/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocromos c/metabolismo , Primers do DNA , Dinoprostona/metabolismo , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Mesilato de Imatinib , Immunoblotting , Células K562/efeitos dos fármacos , Células K562/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
8.
Biotechnol Appl Biochem ; 47(Pt 3): 159-67, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17274761

RESUMO

C-PC (C-phycocyanin) is a water-soluble biliprotein from the filamentous cyanobacterium Spirulina platensis with potent antioxidant, anti-inflammatory and anticancerous properties. In the present study, the effect of C-PC was tested on the proliferation of doxorubicin-sensitive (S-HepG2) and -resistant (R-HepG2) HCC (hepatocellular carcinoma) cell lines. These studies indicate a 50% decrease in the proliferation of S- and R-HepG2 cells treated with 40 and 50 microM C-PC for 24 h respectively. C-PC also enhanced the sensitivity of R-HepG2 cells to doxorubicin. R-HepG2 cells treated with C-PC showed typical apoptotic features such as membrane blebbing and DNA fragmentation. Flow-cytometric analysis of R-HepG2 cells treated with 10, 25 and 50 microM C-PC for 24 h showed 18.8, 39.72 and 65.64% cells in sub-G(0)/G(1)-phase respectively. Cytochrome c release, decrease in membrane potential, caspase 3 activation and PARP [poly(ADP-ribose) polymerase] cleavage were observed in C-PC-treated R-HepG2 cells. These studies also showed down-regulation of the anti-apoptotic protein Bcl-2 and up-regulation of the pro-apoptotic Bax (Bcl2-associated X-protein) protein in the R-HepG2 cells treated with C-PC. The present study thus demonstrates that C-PC induces apoptosis in R-HepG2 cells and its potential as an anti-HCC agent.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/fisiopatologia , Doxorrubicina/administração & dosagem , Neoplasias Hepáticas/fisiopatologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ficocianina/administração & dosagem , Spirulina/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/patologia
9.
Arch Biochem Biophys ; 459(2): 169-77, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17303067

RESUMO

We studied the effects of C-Phycocyanin (C-PC), a biliprotein from Spirulina platensis on the 2-acetylaminofluorene (2-AAF)-induced expression of MDR1, encoded by the multidrug resistance (MDR1) gene, in mouse macrophage cell line (RAW 264.7). Our experimental and In silico studies revealed a significant inhibition of 2-AAF-induced expression of MDR1 protein in C-PC treated mouse macrophage cell line. MDR1 induction by 2-AAF was dependent on ROS (reactive oxygen species)-Akt (protein kinase B)-NF-kappaB (Nuclear factor kappa B) signaling pathway. Generation of ROS, phosphorylation of Akt and corresponding nuclear translocation of NF-kappaB, the events that play a major role in the induction of MDR1 expression, were decreased significantly in C-PC treated cells. NADPH oxidase inhibitor, DPI (Diphenyl iodide), and pharmacological inhibitor of Akt, Akt inhibitor IV, also showed a reduction in MDR1 expression, although not to the same extent as C-PC mediated inhibition of MDR1 expression. To further understand the mechanism, we created a computational model of the detailed ROS-Akt-NF-kappaB pathway. C-PC was modeled purely as a ROS scavenger and this representation matched the experimental trends accurately. Also the ROS levels determined through In silico investigation showed that C-PC was more effective in reduction of MDR1 expression than inhibitors of NADPH oxidase and Akt. Our experimental and In silico studies collectively suggest that 2-AAF induces MDR1 by ROS dependent pathway and C-PC is a potential negative regulator of MDR1 expression. This down regulation of MDR1 expression, induced by xenobiotics such as 2-AAF, suggests C-PC's usefulness in overcoming the drug resistance in cellular systems.


Assuntos
2-Acetilaminofluoreno/administração & dosagem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Macrófagos/metabolismo , Modelos Biológicos , Ficocianina/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Simulação por Computador , Combinação de Medicamentos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Macrófagos/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA